17 research outputs found

    On the proliferation of support vectors in high dimensions

    Full text link
    The support vector machine (SVM) is a well-established classification method whose name refers to the particular training examples, called support vectors, that determine the maximum margin separating hyperplane. The SVM classifier is known to enjoy good generalization properties when the number of support vectors is small compared to the number of training examples. However, recent research has shown that in sufficiently high-dimensional linear classification problems, the SVM can generalize well despite a proliferation of support vectors where all training examples are support vectors. In this paper, we identify new deterministic equivalences for this phenomenon of support vector proliferation, and use them to (1) substantially broaden the conditions under which the phenomenon occurs in high-dimensional settings, and (2) prove a nearly matching converse result

    Active Nearest-Neighbor Learning in Metric Spaces

    Full text link
    We propose a pool-based non-parametric active learning algorithm for general metric spaces, called MArgin Regularized Metric Active Nearest Neighbor (MARMANN), which outputs a nearest-neighbor classifier. We give prediction error guarantees that depend on the noisy-margin properties of the input sample, and are competitive with those obtained by previously proposed passive learners. We prove that the label complexity of MARMANN is significantly lower than that of any passive learner with similar error guarantees. MARMANN is based on a generalized sample compression scheme, and a new label-efficient active model-selection procedure
    corecore