20,880 research outputs found
Interaction of Human Serum Albumin with short Polyelectrolytes: A study by Calorimetry and Computer Simulation
We present a comprehensive study of the interaction of human serum albumin
(HSA) with poly(acrylic acid) (PAA; number average degree of polymerization:
25) in aqueous solution. The interaction of HSA with PAA is studied in dilute
solution as the function of the concentration of added salt (20 - 100 mM) and
temperature (25 - 37C). Isothermal titration calorimetry (ITC) is
used to analyze the interaction and to determine the binding constant and
related thermodynamic data. It is found that only one PAA chain is bound per
HSA molecule. The free energy of binding increases with
temperature significantly. decreases with increasing salt
concentration and is dominated by entropic contributions due to the release of
bound counterions. Coarse-grained Langevin computer simulations treating the
counterions in an explicit manner are used study the process of binding in
detail. These simulations demonstrate that the PAA chains are bound in the
Sudlow II site of the HSA. Moreover, is calculated from the
simulations and found to be in very good agreement with the measured data. The
simulations demonstrate clearly that the driving force of binding is the
release of counterions in full agreement with the ITC-data
Processing peracetic acid treated bloodmeal into bioplastic
Renewable and biodegradable bioplastics can be produced from biopolymers such as proteins. Animal blood is a by-product from meat processing and is rich in protein. It is dried into low value bloodmeal and is used as animal feed or fertiliser. Previous work has shown that bloodmeal can be converted into a thermoplastic using water, urea, sodium dodecyl sulphate (SDS), sodium sulphite and triethylene glycol (TEG). To increase its range of applications and acceptance from consumers, the colour and odour was removed from bloodmeal using peracetic acid (PAA). The aim of this study was to investigate the bioplastic processing of 3-5% (w/w) PAA treated bloodmeal.
3-5% PAA treated bloodmeal powder was compression moulded using different combinations of water, TEG, glycerol, SDS, sodium sulphite, urea, borax, salt and sodium silicate at concentrations up to 60 parts per hundred bloodmeal (pphBM). Partially consolidated extrudates and fully consolidated compression moulded sheets were obtained using a combination of water, TEG and SDS. 4% PAA treated bloodmeal produced the best compression moulded sheets and extrudates and was chosen for investigating the effects of water, TEG and SDS concentration on consolidation, specific mechanical energy input (SME) and product colour during extrusion.
Analysis of variance (ANOVA) showed SDS was the most important factor influencing its ability to be extruded because it detangled protein chains and allowed them to form new stabilising interactions required for consolidation. The best extruded sample, which was 98% consolidated and 49% white, contained 40 pphBM water, 10 pphBM TEG and 6 pphBM SDS
Comparison of complexed species of Eu in alumina-bound and free polyacrylic acid: A spectroscopic study
International audienceThe speciation of Eu complexed with polyacrylic acid (PAA) and alumina-bound PAA (PAAads) was studied at pH 5 in 0.1 M NaClO4. Structural parameters were obtained from 7F0 → 5D0 excitation spectra measured by laser-induced fluorescence spectroscopy as well as from Eu LIII-edge extended X-ray absorption fine structure (EXAFS) spectra. The coordination mode was also investigated by infrared spectroscopy. To elucidate the nature of the complexed species, Eu–acetate complexes were used as references. The spectroscopic techniques show that two carboxylate groups with 2–3 (EuPAA) and 4–5 (EuPAAads) water molecules are coordinated to Eu in the first coordination sphere. For EuPAAads, the coordination between carboxylate groups and Eu appears to be bidendate. A similar coordination is probable for EuPAA but the EXAFS data indicate a slightly distorted coordination. The results show that the degree of freedom of carboxylate groups is not the same for free or adsorbed PAA. For PAA, the degree of freedom is constrained by the flexibility of the methylene chain. When PAA is adsorbed on alumina, the polymer chains cannot any more be treated as independent chains. One may rather assume formation of aggregates that form an organic layer at the mineral surface presenting a complex arrangement of carboxylate groups
Mapping atomistic to coarse-grained polymer models using automatic simplex optimization to fit structural properties
We develop coarse-grained force fields for poly (vinyl alcohol) and poly
(acrylic acid) oligomers. In both cases, one monomer is mapped onto a
coarse-grained bead. The new force fields are designed to match structural
properties such as radial distribution functions of various kinds derived by
atomistic simulations of these polymers. The mapping is therefore constructed
in a way to take into account as much atomistic information as possible. On the
technical side, our approach consists of a simplex algorithm which is used to
optimize automatically non-bonded parameters as well as bonded parameters.
Besides their similar conformation (only the functional side group differs),
poly (acrylic acid) was chosen to be in aqueous solution in contrast to a poly
(vinyl alcohol) melt. For poly (vinyl alcohol) a non-optimized bond angle
potential turns out to be sufficient in connection with a special, optimized
non-bonded potential. No torsional potential has to be applied here. For poly
(acrylic acid), we show that each peak of the radial distribution function is
usually dominated by some specific model parameter(s). Optimization of the bond
angle parameters is essential. The coarse-grained forcefield reproduces the
radius of gyration of the atomistic model. As a first application, we use the
force field to simulate longer chains and compare the hydrodynamic radius with
experimental data.Comment: 34 pages, 3 tables, 16 figure
Chemical analysis and aqueous solution properties of Charged Amphiphilic Block Copolymers PBA-b-PAA synthesized by MADIX
We have linked the structural and dynamic properties in aqueous solution of
amphiphilic charged diblock copolymers poly(butyl acrylate)-b-poly(acrylic
acid), PBA-b-PAA, synthesized by controlled radical polymerization, with the
physico-chemical characteristics of the samples. Despite product imperfections,
the samples self-assemble in melt and aqueous solutions as predicted by
monodisperse microphase separation theory. However, the PBA core are abnormally
large; the swelling of PBA cores is not due to AA (the Flory parameter
chiPBA/PAA, determined at 0.25, means strong segregation), but to h-PBA
homopolymers (content determined by Liquid Chromatography at the Point of
Exclusion and Adsorption Transition LC-PEAT). Beside the dominant population of
micelles detected by scattering experiments, capillary electrophoresis CE
analysis permitted detection of two other populations, one of h-PAA, and the
other of free PBA-b-PAA chains, that have very short PBA blocks and never
self-assemble. Despite the presence of these free unimers, the self-assembly in
solution was found out of equilibrium: the aggregation state is history
dependant and no unimer exchange between micelles occurs over months
(time-evolution SANS). The high PBA/water interfacial tension, measured at 20
mN/m, prohibits unimer exchange between micelles. PBA-b-PAA solution systems
are neither at thermal equilibrium nor completely frozen systems: internal
fractionation of individual aggregates can occur.Comment: 32 pages, 16 figures and 4 tables submitted to Journal of Interface
and Colloidal Scienc
Double walled carbon nanotube/polymer composites via in-situ nitroxide mediated polymerisation of amphiphilic block copolymers
Because of their unique physical, chemical, and structural properties, carbon nanotubes (CNT) are playing an increasingly important role in the development of new engineering materials [1]. Across many different applications, CNT/polymer composites have been extensively studied [2] S.B. Sinnot and R. Andrews, Carbon nanotubes: synthesis, properties, and applications, Crit Rev Solid State Mater Sci 26 (2001), pp. 145–249.[2]. The key problem for CNT/polymer composite elaboration is the dispersion, compatibilization, and stabilization of the CNT in the polymer matrix. To solve this problem, a structure with di-block copolymers, one with a good affinity to CNT (monomer M1), the other being the matrix (monomer M2), is proposed in this study, as shown on the two steps mechanism of Fig. 1
Evaluation of the Physical Stability of Zinc Oxide Suspensions Containing Sodium Poly-(acrylate) and Sodium Dodecylsulfate.
The physical stability of zinc oxide (ZnO) aqueous suspensions has been monitored during two months by different methods of investigation. The suspensions were formulated with ZnO at a fixed concentration (5 wt%), sodium poly-(acrylate), as a viscosifier, and sodium dodecylsulfate (SDS), as a wetting agent. The rheological study shows that the suspensions exhibit a non-Newtonian, most often shear-thinning behavior and their apparent viscosity increases with polymer concentration. The rheograms of most of the ZnO suspensions do not vary during the experimental period. The viscoelastic properties of these suspensions, such as elastic or storage modulus (G′), viscous or loss modulus (G″) and phase angle (δ) were also examined. For% strains lower than 10%, all the formulations show strong elastic properties (G′ > G″, δ varies between 5 and 15°). Beyond 10% strain, the rheological behavior changes progressively from elastic to viscous (G″ > G′ for % strain >80%). Consistently, δ increases and reaches the 50–70° zone. Multiple light scattering (back-scattered intensity), measured with the Turbiscan ags, was used to characterize suspension physical stability (early detection of particle or aggregate size variations and particle/aggregate migration phenomena). Suspensions containing 0.4 and 0.6 wt% polymer remain stable and macroscopically homogeneous, without being affected by the change of particle size observed with a laser particle sizer. Sedimentation tests, pH, and ζ potential measurements versus time, also confirmed these findings
Quantum Monte Carlo studies of spinons in one-dimensional spin systems
Observing constituent particles with fractional quantum numbers in confined
and deconfined states is an interesting and challenging problem in quantum
many-body physics. Here we further explore a computational scheme [Y. Tang and
A. W. Sandvik, Phys. Rev. Lett. {\bf 107}, 157201 (2011)] based on valence-bond
quantum Monte Carlo simulations of quantum spin systems. Using several
different one-dimensional models, we characterize spinon excitations
using the spinon size and confinement length (the size of a bound state). The
spinons have finite size in valence-bond-solid states, infinite size in the
critical region, and become ill-defined in the N\'eel state. We also verify
that pairs of spinons are deconfined in these uniform spin chains but become
confined upon introducing a pattern of alternating coupling strengths
(dimerization) or coupling two chains (forming a ladder). In the dimerized
system an individual spinon can be small when the confinement length is
large---this is the case when the imposed dimerization is weak but the ground
state of the corresponding uniform chain is a spontaneously formed
valence-bond-solid (where the spinons are deconfined). Based on our numerical
results, we argue that the situation is associated with
weak repulsive short-range spinon-spinon interactions. In principle both the
length-scales can be individually tuned from small to infinite (with ) by varying model parameters. In the ladder system the two lengths
are always similar, and this is the case also in the dimerized systems when the
corresponding uniform chain is in the critical phase. In these systems the
effective spinon-spinon interactions are purely attractive and there is only a
single large length scale close to criticality, which is reflected in the
standard spin correlations as well as in the spinon characteristics.Comment: 15 pages, 15 figure
Electrolyte effects on polyacrylic acid-polyvinylpyrrolidone aqueous glycol mixtures for use as de-icing fluids
Rheological and wind tunnels measurements are presented for mixtures of polymers polyacrylic acid [PAA] and polyvinylpyrrolidone [PVP] polymers dispersed in water-1,2 propylene glycol mixture to examine their use as potential aircraft de-icing fluids. PAA solutions which form the basis of de-icing fluids are known to result in undesirable gelation which may lead to undesirable and catastrophic consequences in such applications. In this study, we examine the blending of PVP with PAA blends as alternative de-icing fluid formulations that can reduce the likelihood of forming such irreversible gel deposits. Through adjustment of the electrolyte concentration, the ratio of PAA to PVP as well as the molecular weight of PVP, it is possible to achieve a required viscosity profile to that exhibited by a model de-icing fluid across a range of appropriate temperatures. Wind tunnel tests indicate that the mixtures are capable of meeting the necessary requirements for boundary layer depletion as well as having sufficient capability of retaining a stable layer required during aircraft taxiing
- …
