2,095 research outputs found
Radiological Society of North America (RSNA) 3D printing Special Interest Group (SIG): Guidelines for medical 3D printing and appropriateness for clinical scenarios
Este número da revista Cadernos de Estudos Sociais estava em organização quando fomos colhidos pela morte do sociólogo Ernesto Laclau. Seu falecimento em 13 de abril de 2014 surpreendeu a todos, e particularmente ao editor Joanildo Burity, que foi seu orientando de doutorado na University of Essex, Inglaterra, e que recentemente o trouxe à Fundação Joaquim Nabuco para uma palestra, permitindo que muitos pudessem dialogar com um dos grandes intelectuais latinoamericanos contemporâneos. Assim, buscamos fazer uma homenagem ao sociólogo argentino publicando uma entrevista inédita concedida durante a sua passagem pelo Recife, em 2013, encerrando essa revista com uma sessão especial sobre a sua trajetória
Radiological Society of North America (RSNA) 3D printing Special Interest Group (SIG): Guidelines for medical 3D printing and appropriateness for clinical scenarios
PRELIMINARY FINDINGS OF A POTENZIATED PIEZOSURGERGICAL DEVICE AT THE RABBIT SKULL
The number of available ultrasonic osteotomes has remarkably increased. In vitro and in vivo studies
have revealed differences between conventional osteotomes, such as rotating or sawing devices, and
ultrasound-supported osteotomes (Piezosurgery®) regarding the micromorphology and roughness
values of osteotomized bone surfaces.
Objective: the present study compares the micro-morphologies and roughness values of
osteotomized bone surfaces after the application of rotating and sawing devices, Piezosurgery
Medical® and Piezosurgery Medical New Generation Powerful Handpiece.
Methods: Fresh, standard-sized bony samples were taken from a rabbit skull using the following
osteotomes: rotating and sawing devices, Piezosurgery Medical® and a Piezosurgery Medical New
Generation Powerful Handpiece. The required duration of time for each osteotomy was recorded.
Micromorphologies and roughness values to characterize the bone surfaces following the different
osteotomy methods were described. The prepared surfaces were examined via light microscopy,
environmental surface electron microscopy (ESEM), transmission electron microscopy (TEM), confocal
laser scanning microscopy (CLSM) and atomic force microscopy. The selective cutting of mineralized
tissues while preserving adjacent soft tissue (dura mater and nervous tissue) was studied. Bone
necrosis of the osteotomy sites and the vitality of the osteocytes near the sectional plane were
investigated, as well as the proportion of apoptosis or cell degeneration.
Results and Conclusions: The potential positive effects on bone healing and reossification
associated with different devices were evaluated and the comparative analysis among the different
devices used was performed, in order to determine the best osteotomes to be employed during
cranio-facial surgery
Applications of 3D printing in the management of severe spinal conditions
The latest and fastest-growing innovation in the medical field has been the advent of three-dimensional printing technol- ogies, which have recently seen applications in the production of low-cost, patient-specific medical implants. While a wide range of three-dimensional printing systems has been explored in manufacturing anatomical models and devices for the medical setting, their applications are cutting-edge in the field of spinal surgery. This review aims to provide a com- prehensive overview and classification of the current applications of three-dimensional printing technologies in spine care. Although three-dimensional printing technology has been widely used for the construction of patient-specific ana- tomical models of the spine and intraoperative guide templates to provide personalized surgical planning and increase pedicle screw placement accuracy, only few studies have been focused on the manufacturing of spinal implants. Therefore, three-dimensional printed custom-designed intervertebral fusion devices, artificial vertebral bodies and disc substitutes for total disc replacement, along with tissue engineering strategies focused on scaffold constructs for bone and cartilage regeneration, represent a set of promising applications towards the trend of individualized patient care
Recent trends, technical concepts and components of computer-assisted orthopedic surgery systems: A comprehensive review
Computer-assisted orthopedic surgery (CAOS) systems have become one of the most important and challenging types of system in clinical orthopedics, as they enable precise treatment of musculoskeletal diseases, employing modern clinical navigation systems and surgical tools. This paper brings a comprehensive review of recent trends and possibilities of CAOS systems. There are three types of the surgical planning systems, including: systems based on the volumetric images (computer tomography (CT), magnetic resonance imaging (MRI) or ultrasound images), further systems utilize either 2D or 3D fluoroscopic images, and the last one utilizes the kinetic information about the joints and morphological information about the target bones. This complex review is focused on three fundamental aspects of CAOS systems: their essential components, types of CAOS systems, and mechanical tools used in CAOS systems. In this review, we also outline the possibilities for using ultrasound computer-assisted orthopedic surgery (UCAOS) systems as an alternative to conventionally used CAOS systems.Web of Science1923art. no. 519
PRP and BMAC for Musculoskeletal Conditions via Biomaterial Carriers.
Platelet-rich plasma (PRP) and bone marrow aspirate concentrate (BMAC) are orthobiologic therapies considered as an alternative to the current therapies for muscle, bone and cartilage. Different formulations of biomaterials have been used as carriers for PRP and BMAC in order to increase regenerative processes. The most common biomaterials utilized in conjunction with PRP and BMAC clinical trials are organic scaffolds and natural or synthetic polymers. This review will cover the combinatorial strategies of biomaterial carriers with PRP and BMAC for musculoskeletal conditions (MsCs) repair and regeneration in clinical trials. The main objective is to review the therapeutic use of PRP and BMAC as a treatment option for muscle, bone and cartilage injuries
The Osteoporosis Society of Hong Kong (OSHK): 2013 OSHK Guideline for Clinical Management of Postmenopausal Osteoporosis in Hong Kong
published_or_final_versio
- …
