9 research outputs found

    Mobile robot transportation in laboratory automation

    Get PDF
    In this dissertation a new mobile robot transportation system is developed for the modern laboratory automation to connect the distributed automated systems and workbenches. In the system, a series of scientific and technical robot indoor issues are presented and solved, including the multiple robot control strategy, the indoor transportation path planning, the hybrid robot indoor localization, the recharging optimization, the robot-automated door interface, the robot blind arm grasping & placing, etc. The experiments show the proposed system and methods are effective and efficient

    An intelligent multi-floor mobile robot transportation system in life science laboratories

    Get PDF
    In this dissertation, a new intelligent multi-floor transportation system based on mobile robot is presented to connect the distributed laboratories in multi-floor environment. In the system, new indoor mapping and localization are presented, hybrid path planning is proposed, and an automated doors management system is presented. In addition, a hybrid strategy with innovative floor estimation to handle the elevator operations is implemented. Finally the presented system controls the working processes of the related sub-system. The experiments prove the efficiency of the presented system

    Intelligent strategies for mobile robotics in laboratory automation

    Get PDF
    In this thesis a new intelligent framework is presented for the mobile robots in laboratory automation, which includes: a new multi-floor indoor navigation method is presented and an intelligent multi-floor path planning is proposed; a new signal filtering method is presented for the robots to forecast their indoor coordinates; a new human feature based strategy is proposed for the robot-human smart collision avoidance; a new robot power forecasting method is proposed to decide a distributed transportation task; a new blind approach is presented for the arm manipulations for the robots

    Navigation, Path Planning, and Task Allocation Framework For Mobile Co-Robotic Service Applications in Indoor Building Environments

    Full text link
    Recent advances in computing and robotics offer significant potential for improved autonomy in the operation and utilization of today’s buildings. Examples of such building environment functions that could be improved through automation include: a) building performance monitoring for real-time system control and long-term asset management; and b) assisted indoor navigation for improved accessibility and wayfinding. To enable such autonomy, algorithms related to task allocation, path planning, and navigation are required as fundamental technical capabilities. Existing algorithms in these domains have primarily been developed for outdoor environments. However, key technical challenges that prevent the adoption of such algorithms to indoor environments include: a) the inability of the widely adopted outdoor positioning method (Global Positioning System - GPS) to work indoors; and b) the incompleteness of graph networks formed based on indoor environments due to physical access constraints not encountered outdoors. The objective of this dissertation is to develop general and scalable task allocation, path planning, and navigation algorithms for indoor mobile co-robots that are immune to the aforementioned challenges. The primary contributions of this research are: a) route planning and task allocation algorithms for centrally-located mobile co-robots charged with spatiotemporal tasks in arbitrary built environments; b) path planning algorithms that take preferential and pragmatic constraints (e.g., wheelchair ramps) into consideration to determine optimal accessible paths in building environments; and c) navigation and drift correction algorithms for autonomous mobile robotic data collection in buildings. The developed methods and the resulting computational framework have been validated through several simulated experiments and physical deployments in real building environments. Specifically, a scenario analysis is conducted to compare the performance of existing outdoor methods with the developed approach for indoor multi-robotic task allocation and route planning. A simulated case study is performed along with a pilot experiment in an indoor built environment to test the efficiency of the path planning algorithm and the performance of the assisted navigation interface developed considering people with physical disabilities (i.e., wheelchair users) as building occupants and visitors. Furthermore, a case study is performed to demonstrate the informed retrofit decision-making process with the help of data collected by an intelligent multi-sensor fused robot that is subsequently used in an EnergyPlus simulation. The results demonstrate the feasibility of the proposed methods in a range of applications involving constraints on both the environment (e.g., path obstructions) and robot capabilities (e.g., maximum travel distance on a single charge). By focusing on the technical capabilities required for safe and efficient indoor robot operation, this dissertation contributes to the fundamental science that will make mobile co-robots ubiquitous in building environments in the near future.PHDCivil EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/143969/1/baddu_1.pd

    Enabling an ageing workforce: Using design to innovate the workplace and empower older workers

    Get PDF
    Australia’s population is ageing, but with enhanced health prospects and insufficient retirement funds, and industries impacted by a dwindling itinerate manual labour supply, workers will want, and may need, to remain in the workforce for longer. However, as people age, they lose muscular strength, experience a decline in physical and cognitive performance, and are more vulnerable to muscular-skeletal issues caused by repetitive or awkward movement patterns. Consequently, ageing workers in occupations that require sustained physical activities are at increased risk of injury and exacerbated physical decline and may experience ageist discrimination in the workplace that impacts their psychological wellbeing. This research, Enabling an Ageing Workforce, recognises the issues facing the older worker across a range of different workplace contexts and asks the question: How can design and new technologies address the compounding factors of an ageing (working) population and enable older workers to continue to be productive and effective whilst ensuring their personal wellbeing? Enabling an Ageing Workforce’ is a collaborative research and design project between RMIT University’s ‘Safeness by Design’ initiative and the Innovation Centre of WorkSafe Victoria. This project investigates ageing, wellbeing, and workplace safeness within specific industries to identify areas of concern, opportunities for design intervention, and the proposal of future-focused design solutions. The researchers conduct a substantial scope of enquiry, while concurrently undertaking a partnered design studio with Industrial Design students, to develop and respond with appropriate design solutions. The research identifies that safeness issues exist across specific industry contexts because of workplace culture, practices and predominant behaviours, specific work actions and activities, workplace design, economic and time pressures, and poor risk literacy, training and awareness. The design studio component sees students addressing research-identified issues across many industry sectors and workplace contexts to: • prevent musculoskeletal issues in healthcare workers in the homecare environment, • correct harmful movement behaviours in manufacturing environments, • support older workers in manual tasks, through assistive technologies, • address mental health in the construction industry, • reduce ladder injuries in the residential construction industry, • reduce vibration related injuries in the agricultural sector. This research reveals insights into how a ‘safeness by design’ lens can enable an ageing Australian workforce. Such an approach needs to balance pre-emptive and reactive safety measures, focusing on creating a safe and supportive working environment for all workers. Whilst it is important to support older workers to reduce risk or injury and to promote their capability and performance, enabling longevity, it is also critical to implement measures that protect younger workers from unsafe workplace behaviours, processes and expectations that can lead to longer-term impairment, and may result in them leaving that industry prematurely

    Psr1p interacts with SUN/sad1p and EB1/mal3p to establish the bipolar spindle

    Get PDF
    Regular Abstracts - Sunday Poster Presentations: no. 382During mitosis, interpolar microtubules from two spindle pole bodies (SPBs) interdigitate to create an antiparallel microtubule array for accommodating numerous regulatory proteins. Among these proteins, the kinesin-5 cut7p/Eg5 is the key player responsible for sliding apart antiparallel microtubules and thus helps in establishing the bipolar spindle. At the onset of mitosis, two SPBs are adjacent to one another with most microtubules running nearly parallel toward the nuclear envelope, creating an unfavorable microtubule configuration for the kinesin-5 kinesins. Therefore, how the cell organizes the antiparallel microtubule array in the first place at mitotic onset remains enigmatic. Here, we show that a novel protein psrp1p localizes to the SPB and plays a key role in organizing the antiparallel microtubule array. The absence of psr1+ leads to a transient monopolar spindle and massive chromosome loss. Further functional characterization demonstrates that psr1p is recruited to the SPB through interaction with the conserved SUN protein sad1p and that psr1p physically interacts with the conserved microtubule plus tip protein mal3p/EB1. These results suggest a model that psr1p serves as a linking protein between sad1p/SUN and mal3p/EB1 to allow microtubule plus ends to be coupled to the SPBs for organization of an antiparallel microtubule array. Thus, we conclude that psr1p is involved in organizing the antiparallel microtubule array in the first place at mitosis onset by interaction with SUN/sad1p and EB1/mal3p, thereby establishing the bipolar spindle.postprin

    Removal of antagonistic spindle forces can rescue metaphase spindle length and reduce chromosome segregation defects

    Get PDF
    Regular Abstracts - Tuesday Poster Presentations: no. 1925Metaphase describes a phase of mitosis where chromosomes are attached and oriented on the bipolar spindle for subsequent segregation at anaphase. In diverse cell types, the metaphase spindle is maintained at a relatively constant length. Metaphase spindle length is proposed to be regulated by a balance of pushing and pulling forces generated by distinct sets of spindle microtubules and their interactions with motors and microtubule-associated proteins (MAPs). Spindle length appears important for chromosome segregation fidelity, as cells with shorter or longer than normal metaphase spindles, generated through deletion or inhibition of individual mitotic motors or MAPs, showed chromosome segregation defects. To test the force balance model of spindle length control and its effect on chromosome segregation, we applied fast microfluidic temperature-control with live-cell imaging to monitor the effect of switching off different combinations of antagonistic forces in the fission yeast metaphase spindle. We show that spindle midzone proteins kinesin-5 cut7p and microtubule bundler ase1p contribute to outward pushing forces, and spindle kinetochore proteins kinesin-8 klp5/6p and dam1p contribute to inward pulling forces. Removing these proteins individually led to aberrant metaphase spindle length and chromosome segregation defects. Removing these proteins in antagonistic combination rescued the defective spindle length and, in some combinations, also partially rescued chromosome segregation defects. Our results stress the importance of proper chromosome-to-microtubule attachment over spindle length regulation for proper chromosome segregation.postprin

    OzTug mobile robot for manufacturing transportation

    Full text link
    Firstly, this paper introduces the OzTug mobile robot developed to autonomously manoeuvre large loads within a manufacturing environment. The mobile robot utilizes differential drive and necessary design criteria includes low-cost, mechanical robustness, and the ability to manoeuvre loads ranging up to 2000kg. The robot is configured to follow a predefined trajectory while maintaining the forward velocity of a user-specified velocity profile. A vision-based fuzzy logic line following controller enables the robot to track the paths on the floor of the manufacturing environment. Secondly, in order to tow large loads along predefined paths three different robot-load configurations are proposed. Simulation within the Webots environment was performed in order to empirically evaluate the three different robot-load configurations. The simulation results demonstrate the cost-performance trade-off of two of the approaches
    corecore