30,874 research outputs found
Recommended from our members
Poly(oxime-ester) Vitrimers with Catalyst-Free Bond Exchange.
Vitrimers are network polymers that undergo associative bond exchange reactions in the condensed phase above a threshold temperature, dictated by the exchangeable bonds comprising the vitrimer. For vitrimers, chemistries reliant on poorly nucleophilic bond exchange partners (e.g., hydroxy-functionalized alkanes) or poorly electrophilic exchangeable bonds, catalysts are required to lower the threshold temperature, which is undesirable in that catalyst leaching or deactivation diminishes its influence over time and may compromise reuse. Here we show how to access catalyst-free bond exchange reactions in catalyst-dependent polyester vitrimers by obviating conventional ester bonds in favor of oxime-esters. Poly(oxime-ester) (POE) vitrimers are synthesized using thiol-ene click chemistry, affording high stretchability and malleability. POE vitrimers are readily recycled with little degradation of their initial mechanical properties, suggesting exciting opportunities for sustainable plastics
Modifications at the C-Terminus To Improve Pyrrole−Imidazole Polyamide Activity in Cell Culture
Pyrrole−imidazole (Py-Im) hairpin polyamides are a class of small molecule DNA minor groove binding compounds that have been shown to modulate endogenous gene expression in cell culture. Gene regulation by polyamides requires efficient cellular uptake and nuclear localization properties for candidate compounds. To further optimize Py-Im polyamides for enhanced potency in cell culture, a focused library of polyamides possessing various modifications at the C-terminus was synthesized and tested. Comparison of polyamide biological activity in two cell lines revealed tolerance for structural modifications and agreement in activity trends between cell lines. The use of an oxime linkage between the polyamide and an aromatic functionality on the C-terminus resulted in a ~20-fold increase in the potency of polyamides targeted to the androgen response element (ARE) in LNCaP cells by measuring AR-activated PSA expression
Recommended from our members
Imidazole aldoximes effective in assisting butyrylcholinesterase catalysis of organophosphate detoxification.
Intoxication by organophosphate (OP) nerve agents and pesticides should be addressed by efficient, quickly deployable countermeasures such as antidotes reactivating acetylcholinesterase or scavenging the parent OP. We present here synthesis and initial in vitro characterization of 14 imidazole aldoximes and their structural refinement into three efficient reactivators of human butyrylcholinesterase (hBChE) inhibited covalently by nerve agent OPs, sarin, cyclosarin, VX, and the OP pesticide metabolite, paraoxon. Rapid reactivation of OP-hBChE conjugates by uncharged and nonprotonated tertiary imidazole aldoximes allows the design of a new OP countermeasure by conversion of hBChE from a stoichiometric to catalytic OP bioscavenger with the prospect of oral bioavailability and central nervous system penetration. The enhanced in vitro reactivation efficacy determined for tertiary imidazole aldoximes compared to that of their quaternary N-methyl imidazolium analogues is attributed to ion pairing of the cationic imidazolium with Asp 70, altering a reactive alignment of the aldoxime with the phosphorus in the OP-hBChE conjugate
Studies on the rare of central catecholaminergic mechanisms in the antidotal effect of the oxime HI 6 in soman poisoned mice
Salicylaldehyde hydrazones: buttressing of outer sphere hydrogen-bonding and copper-extraction properties
Salicylaldehyde hydrazones are weaker copper extractants than their oxime derivatives, which are used in hydrometallurgical processes to recover ~20 % of the world’s copper. Their strength, based on the extraction equilibrium constant Ke, can be increased by nearly three orders of magnitude by incorporating electron-withdrawing or hydrogen-bond acceptor groups (X) ortho to the phenolic OH group of the salicylaldehyde unit. Density functional theory calculations suggest that the effects of the 3-X substituents arise from a combination of their influence on the acidity of the phenol in the pH-dependent equilibrium, Cu2+ + 2Lorg ⇌ [Cu(L–H)2]org + 2H+, and on their ability to ‘buttress’ interligand hydrogen bonding by interacting with the hydrazone N–H donor group. X-ray crystal structure determination and computed structures indicate that in both the solid state and the gas phase, coordinated hydrazone groups are less planar than coordinated oximes and this has an adverse effect on intramolecular hydrogen-bond formation to the neighbouring phenolate oxygen atoms
Direct Patterning of a Cyclotriveratrylene Derivative for Directed Self-assembly of C60
A novel apex-modified cyclotriveratrylene (CTV) derivative with an attached thiolane-containing lipoic acid linker was directly patterned onto gold substrates via dip-pen nanolithography (DPN). The addition of a dithiolane-containing linker to the apex of CTV provides a molecule that can adhere to a gold surface with its bowl-shaped cavity directed away from the surface, thereby providing a surface-bound CTV host that can be used for the directed assembly of guest molecules. Subsequent exposure of these CTV microarrays to C60 in toluene resulted in the directed assembly of predesigned, spatially controlled, high-density microarrays of C60. The molecular recognition capabilities of this CTV template toward C60 provides proof-of-concept that supramolecular CTV scaffolds can be directly patterned onto surfaces providing a foundation for the development of organic electronic and optoelectronic materials
In vivo imaging of pyrrole-imidazole polyamides with positron emission tomography
The biodistribution profiles in mice of two pyrrole-imidazole polyamides were determined by PET. Pyrrole-imidazole polyamides are a class of small molecules that can be programmed to bind a broad repertoire of DNA sequences, disrupt transcription factor-DNA interfaces, and modulate gene expression pathways in cell culture experiments. The 18F-radiolabeled polyamides were prepared by oxime ligation between 4-[18F]-fluorobenzaldehyde and a hydroxylamine moiety at the polyamide C terminus. Small animal PET imaging of radiolabeled polyamides administered to mice revealed distinct differences in the biodistribution of a 5-ring β-linked polyamide versus an 8-ring hairpin, which exhibited better overall bioavailability. In vivo imaging of pyrrole-imidazole polyamides by PET is a minimum first step toward the translation of polyamide-based gene regulation from cell culture to small animal studies
1,4-diacetoxy-β-lactams. Reactions with nucleophiles
β-Lactam reacts with hetero nucleophiles under ring cleavage to give 2,2-dimethyl-3-oximinobutanoic esters 6 and 7 . N-hydroxyazetidine 5 , the precursor of β-lactam 1, is prepared by a new method
Onium ions. 18. Static protonated and exchanging diprotonated ambivalent heteroorganic systems. hydroxylamines, acetone oxime, and dimethyl sulfoxide
Microwave Assisted Synthesis of Py-Im Polyamides
Microwave synthesis was utilized to rapidly build Py-Im polyamides in high yields and purity using Boc-protection chemistry on Kaiser oxime resin. A representative polyamide targeting the 5′-WGWWCW-3′ (W = A or T) subset of the consensus Androgen and Glucocorticoid Response Elements was synthesized in 56% yield after 20 linear steps and HPLC purification. It was confirmed by Mosher amide derivatization of the polyamide that a chiral α-amino acid does not racemize after several additional coupling steps
- …
