210,118 research outputs found
The properties of protective oxide scales containing cerium on alloy 800H in oxidizing and oxidizing/sulphidizing environments
The corrosion protection of oxide scales formed by electrophoretic deposition in a cerium-containing sol on Alloy 800H, a 32Ni-20Cr steel, followed by firing in air at 1123 K was studied in oxidizing and mixed oxidizing/sulphidizing environments at elevated temperatures. In particular, the influence of type of sol solvent, sol concentration, and thickness of deposited layer on the protection were studied. An optimized treatment was deduced which led to a significant improvement in corrosion behavior in oxidizing/sulphidizing environments.\u
Method for depositing an oxide coating
A metal oxide coating is plated onto a metal substrate at the cathode from an acid solution which contains an oxidizing agent. The process is particularly useful for producing solar panels. Conventional plating at the cathode avoids the presence of oxidizing agents. Coatings made in accordance with the invention are stable both at high temperatures and while under the influence of high photon flux in the visible range
Meta-analysis reveals ammonia-oxidizing bacteria respond more strongly to nitrogen addition than ammonia-oxidizing archaea
Shifts in microbial communities driven by anthropogenic nitrogen (N) addition have broad-scale ecological consequences. However, responses of microbial groups to exogenous N supply vary considerably across studies, hindering efforts to predict community changes. We used meta-analytical techniques to explore how amoA gene abundances of ammonia-oxidizing archaea (AOA) and bacteria (AOB) respond to N addition, and found that N addition increased AOA and AOB abundances by an average of 27% and 326%, respectively. Responses of AOB varied by study type, ecosystem, fertilizer type, and soil pH, and were strongest in unmanaged wildland soils and soils fertilized with inorganic N sources. Increases in nitrification potential with N addition significantly correlated with only AOB. Our analyses suggest that elevated N supply enhances soil nitrification potential by increasing AOB populations, and that this effect may be most pronounced in unmanaged wildland soils
Thermal oxidative degradation reactions of linear perfluoroalky lethers
Thermal and thermal oxidative stability studies were performed on linear perfluoro alkyl ether fluids. The effect on degradation by metal catalysts and degradation inhibitors are reported. The liner perfluoro alkylethers are inherently unstable at 316 C in an oxidizing atmosphere. The metal catalysts greatly increased the rate of degradation in oxidizing atmospheres. In the presence of these metals in an oxidizing atmosphere, the degradation inhibitors were highly effective in arresting degradation at 288 C. However, the inhibitors had only limited effectiveness at 316 C. The metals promote degradation by chain scission. Based on elemental analysis and oxygen consumption data, the linear perfluoro alkylether fluids have a structural arrangement based on difluoroformyl and tetrafluoroethylene oxide units, with the former predominating
Raman spectroscopy study of the interface structure in (CaCuO2)n/(SrTiO3)m superlattices
Raman spectra of CaCuO2/SrTiO3 superlattices show clear spectroscopic marker
of two structures formed in CaCuO2 at the interface with SrTiO3. For
non-superconducting superlattices, grown in low oxidizing atmosphere, the 425
cm-1 frequency of oxygen vibration in CuO2 planes is the same as for CCO films
with infinite layer structure (planar Cu-O coordination). For superconducting
superlattices grown in highly oxidizing atmosphere, a 60 cm-1 frequency shift
to lower energy occurs. This is ascribed to a change from planar to pyramidal
Cu-O coordination because of oxygen incorporation at the interface. Raman
spectroscopy proves to be a powerful tool for interface structure
investigation
Primary and secondary oxidative stress in Bacillus
Coping with oxidative stress originating from oxidizing compounds or reactive oxygen species (ROS), associated with the exposure to agents that cause environmental stresses, is one of the prerequisites for an aerobic lifestyle of Bacillus spp. such as B. subtilis, B. cereus and B. anthracis. This minireview highlights novel insights in the primary oxidative stress response caused by oxidizing compounds including hydrogen peroxide and the secondary oxidative stress responses apparent upon exposure to a range of agents and conditions leading to environmental stresses such as antibiotics, heat and acid. Insights in the pathways and damaging radicals involved have been compiled based among others on transcriptome studies, network analyses and fluorescence techniques for detection of ROS at single cell level. Exploitation of the current knowledge for the control of spoilage and pathogenic bacteria is discussed
Interactions among sulfide-oxidizing bacteria
The responses of different phototrophic bacteria in a competitive experimental system are studied, one in which primary factors such as H2S or light limited photometabolism. Two different types of bacteria shared one limited source of sulfide under specific conditions of light. The selection of a purple and a green sulfur bacteria and the cyanobacterium was based on their physiological similarity and also on the fact that they occur together in microbial mats. They all share anoxygenic photosynthesis, and are thus probably part of an evolutionary continuum of phototrophic organisms that runs from, strictly anaerobic physiology to the ability of some cyanobacteria to shift between anoxygenic bacterial style photosynthesis and the oxygenic kind typical of eukaryotes
Multilayer refractory nozzles produced by plasma-spray process
Multilayer rocket nozzles formed by plasma spraying have good thermal shock resistance and can be reheated in an oxidizing environment without loss of coating adherence. Suggested application of this process are for the production of refractory components, which can be formed as surfaces of revolution
Multiple-orifice throttle valve
Multiple-orifice throttle valve is not subject to cold welding in a vacuum environment and is compatible with strong oxidizing fluid. The valve is of all metal construction using simple components that do not slide or rotate and excludes static or dynamic seals
The influence of residual oxidizing impurities on the synthesis of graphene by atmospheric pressure chemical vapor deposition
The growth of graphene on copper by atmospheric pressure chemical vapor
deposition in a system free of pumping equipment is investigated. The emphasis
is put on the necessity of hydrogen presence during graphene synthesis and
cooling. In the absence of hydrogen during the growth step or cooling at slow
rate, weak carbon coverage, consisting mostly of oxidized and amorphous carbon,
is obtained on the copper catalyst. The oxidation originates from the
inevitable occurrence of residual oxidizing impurities in the reactor's
atmosphere. Graphene with appreciable coverage can be grown within the
vacuum-free furnace only upon admitting hydrogen during the growth step. After
formation, it is preserved from the destructive effect of residual oxidizing
contaminants once exposure at high temperature is minimized by fast cooling or
hydrogen flow. Under these conditions, micrometer-sized hexagon-shaped graphene
domains of high structural quality are achieved.Comment: Accepted in Carbo
- …
