1,251,857 research outputs found

    Trolox and ascorbic acid reduce direct and indirect oxidative stress in the IPEC-J2 cells, an in vitro model for the porcine gastrointestinal tract

    Get PDF
    Oxidative stress in the small intestinal epithelium is a major cause of barrier malfunction and failure to regenerate. This study presents a functional in vitro model using the porcine small intestinal epithelial cell line IPEC-J2 to examine the effects of oxidative stress and to estimate the antioxidant and regenerative potential of Trolox, ascorbic acid and glutathione monoethyl ester. Hydrogen peroxide and diethyl maleate affected the tight junction (zona occludens-1) distribution, significantly increased intracellular oxidative stress (CM-H(2)DCFDA) and decreased the monolayer integrity (transepithelial electrical resistance and FD-4 permeability), viability (neutral red) and wound healing capacity (scratch assay). Trolox (2 mM) and 1 mM ascorbic acid pre-treatment significantly reduced intracellular oxidative stress, increased wound healing capacity and reduced FD-4 permeability in oxidatively stressed IPEC-J2 cell monolayers. All antioxidant pre-treatments increased transepithelial electrical resistance and viability only in diethyl maleate-treated cells. Glutathione monoethyl ester (10 mM) pretreatment significantly decreased intracellular oxidative stress and monolayer permeability only in diethyl maleate-treated cells. These data demonstrate that the IPEC-J2 oxidative stress model is a valuable tool to screen antioxidants before validation in piglets

    Oxidative stress and muscle homeostasis

    Get PDF
    Purpose of review The term oxidative stress is often used to indicate a condition in which the accumulation of reactive oxygen species is considered just damaging. We will discuss both the physiological and pathological role of oxidative stress on skeletal muscle homeostasis and function, and how oxidative stress can activates opposite signaling molecule to regulate gene and protein expression to guarantee muscle adaptation and to trigger a pathological condition. Recent findings Emerging evidences have assigned a critical role to oxidative stress in muscle homeostasis and in the physiopathology of skeletal muscle, suggesting that reactive oxygen species are not merely damaging agent inflicting random destruction to the cell structure and function, but useful signaling molecules to regulate growth, proliferation, differentiation, and adaptation, at least within physiological concentration. Summary The role of oxidative stress on muscle homeostasis is quite complex. It is clear that transiently increased levels of oxidative stress might reflect a potentially health promoting process, whereas an uncontrolled accumulation of oxidative stress might have pathological implication. Additional work is, therefore, necessary to understand and define precisely whether the manipulation of the redox balance represents a useful approach in the design of therapeutic strategies for muscle diseases.PURPOSE OF REVIEW: The term oxidative stress is often used to indicate a condition in which the accumulation of reactive oxygen species is considered just damaging. We will discuss both the physiological and pathological role of oxidative stress on skeletal muscle homeostasis and function, and how oxidative stress can activates opposite signaling molecule to regulate gene and protein expression to guarantee muscle adaptation and to trigger a pathological condition. RECENT FINDINGS: Emerging evidences have assigned a critical role to oxidative stress in muscle homeostasis and in the physiopathology of skeletal muscle, suggesting that reactive oxygen species are not merely damaging agent inflicting random destruction to the cell structure and function, but useful signaling molecules to regulate growth, proliferation, differentiation, and adaptation, at least within physiological concentration. SUMMARY: The role of oxidative stress on muscle homeostasis is quite complex. It is clear that transiently increased levels of oxidative stress might reflect a potentially health promoting process, whereas an uncontrolled accumulation of oxidative stress might have pathological implication. Additional work is, therefore, necessary to understand and define precisely whether the manipulation of the redox balance represents a useful approach in the design of therapeutic strategies for muscle diseases

    Determination of the oxidative stability of perfluoropolyalkyl ethers and correlation with chemical structure

    Get PDF
    The oxidative stabilities of several perfluoropolyalkyl ethers (PFPAE) with related chemical structures were determined by thermal gravimetric analysis and correlated with their chemical structures. These results show that oxidative stability increases as the number of difluoroformal groups decreases and as trifluoromethyl substituents are added. They are also consistent with a recently proposed intramolecular disproportionation reaction mechanism involving coordination of successive ether oxygens to a Lewis acid. Since polytetrafluoroethylene contains no oxygen, it provides an indication of the upper limit to oxidative stability of PFPAE fluids. These results also show that oxidative decomposition of PFPAE fluids requires the presence of an active metal as well as air. Consequently, it may be possible to minimize decomposition and thus improve oxidative stability by passivating reactive metal surfaces

    Plasma total antioxidant capacity and peroxidation biomarkers in psoriasis

    Get PDF
    Systemic biomarkers of oxidative stress can be relevant for assessment of psoriasis severity, for prediction of the outcome of therapy and of the development of comorbidities. In this review we aimed to evaluate the relationship between plasma total antioxidant capacity (TAC) and peroxidation biomarkers, as well as their association with dyslipidemia and systemic inflammation in psoriasis. The review of 59 case–control comparisons (from 41 studies) and 17 interventions (from 13 studies) suggests that peroxidation markers are more sensitive than TAC in the evaluation of oxidative stress in psoriasis. Although few studies investigated the effect of treatment on oxidative stress, it seems that biological drugs could be the better choice in the treatment of psoriasis. However, considering the limitations of TAC and plasma peroxidation markers, this review suggests that new methods should be developed in order to evaluate systemic oxidative stress in psoriasis

    Development of assays for biomarkers of oxidative damage to assess the efficacy of fruit-derived antioxidants : a thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Biochemistry at Massey University

    Get PDF
    The diet is a very important part of maintaining a healthy lifestyle. Increased consumption of fruits and vegetables is one practice postulated to decrease the incidence of diseases such as cancer, cardiovascular disease and other disorders. Although there are a number of possible beneficial compounds in fruit, it is believed that the antioxidant components found in these foods may decrease the oxidative damage that could lead to such diseases. Oxidative damage to cellular proteins, lipids and DNA is considered to result from an increase in the production of free radicals, which overwhelm the body's defence system. This research investigated fruit-derived antioxidants, and developed biomarker assays to measure the potential health benefits they may offer. To determine the in vivo antioxidant efficacy of berry fruit anthocyanins, oxidative damage to proteins, lipids and DNA was measured in rats fed several combinations of natural and synthetic diets. Mild oxidative damage was induced by the inclusion of fish oil in these diets. DNA oxidation was determined by measuring urinary 8-hydroxy-2'-deoxyguanosine using reversed-phase high performance liquid chromatography with electrochemical detection. ELISA and colorimetric techniques were used to measure protein carbonyl content of plasma as a reflection of protein oxidation. Oxidation to lipids was assessed by measuring malondialdehyde, which results from lipid peroxidation. Supplementation with fish oil induced a mild form of dietary oxidative damage, as shown by an increase in lipid and protein oxidation. In most cases the berry fruit extracts had little effect on the level of fish oil-induced oxidative damage, however, boysenberry anthocyanin extract significantly reduced protein oxidation when used in combination with the natural diet. Taken together the results suggest that oxidative damage to biomacromolecules may occur by different pathways of oxidative stress, which selectively target either DNA, protein or lipids at varying levels, and the antioxidant is effective only with selected mechanisms of oxidative damage

    Adipocytes cause leukemia cell resistance to daunorubicin via oxidative stress response.

    Get PDF
    Adipocytes promote cancer progression and impair treatment, and have been shown to protect acute lymphoblastic leukemia (ALL) cells from chemotherapies. Here we investigate whether this protection is mediated by changes in oxidative stress. Co-culture experiments showed that adipocytes protect ALL cells from oxidative stress induced by drugs or irradiation. We demonstrated that ALL cells induce intracellular ROS and an oxidative stress response in adipocytes. This adipocyte oxidative stress response leads to the secretion of soluble factors which protect ALL cells from daunorubicin (DNR). Collectively, our investigation shows that ALL cells elicit an oxidative stress response in adipocytes, leading to adipocyte protection of ALL cells against DNR

    Olive polyphenol effects in a mouse model of chronic ethanol addiction

    Get PDF
    Objectives Alcohol addiction elicits oxidative imbalance and it is well known that polyphenols possess antioxidant properties. We investigated whether or not polyphenols could confer a protective potential against alcohol-induced oxidative stress. Methods We administered (per os) for two months 20 mg/kg of olive polyphenols containing mostly hydroxytyrosol in alcoholic adult male mice. Hydroxytyrosol metabolites as hydroxytyrosol sulfate 1 and hydroxytyrosol sulfate 2 were found in the serum of mice administered with polyphenols with the highest amount in animals treated with both polyphenols and alcohol. Oxidative stress was evaluated by FORT (free oxygen radical test) and FORD (free oxygen radical defense) tests. Results Alcoholic mice showed a worse oxidative status than nonalcoholic mice (higher FORT and lower FORD) but polyphenol supplementation partially counteracted the alcohol pro-oxidant effects, as evidenced by FORT. Conclusions A better understanding of the antioxidant protection provided by polyphenols might be of primary interest for drug discovery and dietary-based prevention of the damage associated with chronic alcohol abus

    Exercise Reduce Oxidative Damage in Pregnancy

    Full text link
    Pregnancy is a vulnerable condition to all kinds of "stress", resulting in changes of physiological and metabolic functions. This research aims to determine effect of exercise during pregnancy in reducing oxidative demage marked by decrease of malondialdehyde and 8-hydroxy-diguanosine levels. Randomized pre and posttest control group design was employed in this study. A number of 66 pregnant women were recruited in this study and grouped to two groups, i.e 30 of them as control group and the rest as treatment group. Pregnancy exercise was performed to all 36 pregnant women from 20 weeks gestation on treatment group. The exercise was performed in the morning for about 30 minutes, twice a weeks. On the other hand, daily activities was sugested for control group. Student's t-test was then applied to determine the mean different of treatment and control group with 5 % of significant value. This study reveals that there were significantly higher decrease of (MDA) and 8-OHdG about 0.15 nmol/ml and 0.08 ng/ml, respectively, amongs treatment and control groups (p < 0.05). Clinical outcomes, such as strengten of pelvic muscle and quality of life of treatment group were significantly better compared to control group (p < 0.05). This means that exercise during pregnancy ages of 20 weeks decrease MDA and 8-OHdG levels higher compare to control group without exercise

    DJ-1 interacts with and regulates paraoxonase-2, an enzyme critical for neuronal survival in response to oxidative stress.

    Get PDF
    Loss-of-function mutations in DJ-1 (PARK7) gene account for about 1% of all familial Parkinson's disease (PD). While its physiological function(s) are not completely clear, DJ-1 protects neurons against oxidative stress in both in vitro and in vivo models of PD. The molecular mechanism(s) through which DJ-1 alleviates oxidative stress-mediated damage remains elusive. In this study, we identified Paraoxonase-2 (PON2) as an interacting target of DJ-1. PON2 activity is elevated in response to oxidative stress and DJ-1 is crucial for this response. Importantly, we showed that PON2 deficiency hypersensitizes neurons to oxidative stress induced by MPP+ (1-methyl-4-phenylpyridinium). Conversely, over-expression of PON2 protects neurons in this death paradigm. Interestingly, PON2 effectively rescues DJ-1 deficiency-mediated hypersensitivity to oxidative stress. Taken together, our data suggest a model by which DJ-1 exerts its antioxidant activities, at least partly through regulation of PON2
    corecore