5 research outputs found

    Low-cost printed flexible antenna by using an office printer for conformal applications

    Get PDF
    A low-cost inkjet printing method for antenna fabrication on a polyethylene terephthalate (PET) substrate is presented in this paper. An office inkjet printer is used to have desired patterns of silver nanoparticle ink on the PET substrate without any postprocessing. Silver nanoparticle ink cures instantly as soon as it is ejected from the printer on a chemically treated PET substrate. The thickness of the silver nanoparticle layer was measured to be 300nm with a sheet resistance of as low as 0.3Ω/sq and a conductivity around 1.11 × 107 S/m with single layer deposition. A coplanar waveguide- (CPW-) fed Z-shape planar antenna on the PET substrate achieved the measured radiation efficiency of 62% and the IEEE gain of 1.44 dBi at 2.45 GHz. The printed antenna is also tested in bending conditions to ascertain its performance for the Internet of things (IoT) conformal applications for the future 5G network

    Pulsed Photonic Curing of Conformal Printed Electronics

    Get PDF
    As next-generation electronic products emerge, there is a need to create more electronic functionality in compact spaces. One of the techniques to achieve this is by integrating electronic circuitry on mechanical stress bearing parts of electro-mechanical products. Direct-write printing processes like inkjet printing and aerosol jet printing can be used to print conductive inks on conformal surfaces of mechanical components. Advanced curing/sintering processes such as pulsed photonic curing can be used to cure/sinter printed inks to produce conductive traces. However, the use of photonic curing on conformal surfaces introduces two sources of variability into the process, which are the distance and slope between the flash lamps and the conformal substrate. This research studies the effects that distance and slope between the flash lamps and substrate have on the characteristics of the photonically cured material. Screen printed samples of copper nanoparticle ink on paper substrates were photonically cured at various distances and slope settings in a Novacentrix Pusleforge 3300 machine. Analysis of the experimental data reveals that there is significant decrease in the conductivity of the cured copper ink with increase in both the distance and slope between the flash lamps and the substrate. The lowering of conductivity of the coupons with increase in distance was correlated to the reduction in the intensity of pulsed light with distance from the source. Similarly, the lowering of conductivity of the coupons with increase in slope was correlated to the reduction in the intensity of pulsed light with increase in angle between the incident light and the surface normal. A spectrophotometer was used to correlate the lowering of the conductivity of the printed coupon to the reduction in the amount of light absorbed by the coupon surface with increase in the slope from the flash lamps. This research highlights that distance and slope variations are important considerations to achieve uniform electrical properties in conformal printed electronics undergoing photonic curing

    Ultra-thin silicon technology for tactile sensors

    Get PDF
    In order to meet the requirements of high performance flexible electronics in fast growing portable consumer electronics, robotics and new fields such as Internet of Things (IoT), new techniques such as electronics based on nanostructures, molecular electronics and quantum electronics have emerged recently. The importance given to the silicon chips with thickness below 50 μm is particularly interesting as this will advance the 3D IC technology as well as open new directions for high-performance flexible electronics. This doctoral thesis focusses on the development of silicon–based ultra-thin chip (UTC) for the next generation flexible electronics. UTCs, on one hand can provide processing speed at par with state-of-the-art CMOS technology, and on the other provide the mechanical flexibility to allow smooth integration on flexible substrates. These development form the motivation behind the work presented in this thesis. As the thickness of any silicon piece decreases, the flexural rigidity decreases. The flexural rigidity is defined as the force couple required to bend a non-rigid structure to a unit curvature, and therefore the flexibility increases. The new approach presented in this thesis for achieving thin silicon exploits existing and well-established silicon infrastructure, process, and design modules. The thin chips of thicknesses ranging between 15 μm – 30 μm, were obtained from processed bulk wafer using anisotropic chemical etching. The thesis also presents thin wafer transfer using two-step transfer printing approach, packaging by lamination or encapsulation between two flexible layerand methods to get the electrical connections out of the chip. The devices realised on the wafer as part of front-end processing, consisted capacitors and transistors, have been tested to analyse the effect of bending on the electrical characteristics. The capacitance of metal-oxide-semiconductor (MOS) capacitors increases by ~5% during bending and similar shift is observed in flatband and threshold voltages. Similarly, the carrier mobility in the channel region of metal-oxide-semiconductor field effect transistor (MOSFET) increases by 9% in tensile bending and decreases by ~5% in compressive bending. The analytical model developed to capture the effect of banding on device performance showed close matching with the experimental results. In order to employ these devices as tactile sensors, two types of piezoelectric materials are investigated, and used in extended gate configuration with the MOSFET. Firstly, a nanocomposite of Poly(vinylidene fluoride-co-trifluoroethylene), P(VDF-TrFE) and barium titanate (BT) was developed. The composite, due to opposite piezo and pyroelectric coefficients of constituents, was able to suppress the sensitivity towards temperature when force and temperature varied together, The sensitivity to force in extended gate configuration was measured to be 630 mV/N, and sensitivity to temperature was 6.57 mV/oC, when it was varied during force application. The process optimisation for sputtering piezoelectric Aluminium Nitride (AlN) was also carried out with many parametric variation. AlN does not require poling to exhibit piezoelectricity and therefore offers an attractive alternative for the piezoelectric layer used in devices such as POSFET (where piezoelectric material is directly deposited over the gate area of MOSFET). The optimised process gave highly orientated columnar structure AlN with piezoelectric coefficient of 5.9 pC/N and when connected in extended gate configuration, a sensitivity (normalised change in drain current per unit force) of 2.65 N-1 was obtained

    Inorganic micro/nanostructures-based high-performance flexible electronics for electronic skin application

    Get PDF
    Electronics in the future will be printed on diverse substrates, benefiting several emerging applications such as electronic skin (e-skin) for robotics/prosthetics, flexible displays, flexible/conformable biosensors, large area electronics, and implantable devices. For such applications, electronics based on inorganic micro/nanostructures (IMNSs) from high mobility materials such as single crystal silicon and compound semiconductors in the form of ultrathin chips, membranes, nanoribbons (NRs), nanowires (NWs) etc., offer promising high-performance solutions compared to conventional organic materials. This thesis presents an investigation of the various forms of IMNSs for high-performance electronics. Active components (from Silicon) and sensor components (from indium tin oxide (ITO), vanadium pentaoxide (V2O5), and zinc oxide (ZnO)) were realised based on the IMNS for application in artificial tactile skin for prosthetics/robotics. Inspired by human tactile sensing, a capacitive-piezoelectric tandem architecture was realised with indium tin oxide (ITO) on a flexible polymer sheet for achieving static (upto 0.25 kPa-1 sensitivity) and dynamic (2.28 kPa-1 sensitivity) tactile sensing. These passive tactile sensors were interfaced in extended gate mode with flexible high-performance metal oxide semiconductor field effect transistors (MOSFETs) fabricated through a scalable process. The developed process enabled wafer scale transfer of ultrathin chips (UTCs) of silicon with various devices (ultrathin chip resistive samples, metal oxide semiconductor (MOS) capacitors and n‐channel MOSFETs) on flexible substrates up to 4″ diameter. The devices were capable of bending upto 1.437 mm radius of curvature and exhibited surface mobility above 330 cm2/V-s, on-to-off current ratios above 4.32 decades, and a subthreshold slope above 0.98 V/decade, under various bending conditions. While UTCs are useful for realizing high-density high-performance micro-electronics on small areas, high-performance electronics on large area flexible substrates along with low-cost fabrication techniques are also important for realizing e-skin. In this regard, two other IMNS forms are investigated in this thesis, namely, NWs and NRs. The controlled selective source/drain doping needed to obtain transistors from such structure remains a bottleneck during post transfer printing. An attractive solution to address this challenge based on junctionless FETs (JLFETs), is investigated in this thesis via technology computer-aided design (TCAD) simulation and practical fabrication. The TCAD optimization implies a current of 3.36 mA for a 15 μm channel length, 40 μm channel width with an on-to-off ratio of 4.02x 107. Similar to the NRs, NWs are also suitable for realizing high performance e-skin. NWs of various sizes, distribution and length have been fabricated using various nano-patterning methods followed by metal assisted chemical etching (MACE). Synthesis of Si NWs of diameter as low as 10 nm and of aspect ratio more than 200:1 was achieved. Apart from Si NWs, V2O5 and ZnO NWs were also explored for sensor applications. Two approaches were investigated for printing NWs on flexible substrates namely (i) contact printing and (ii) large-area dielectrophoresis (DEP) assisted transfer printing. Both approaches were used to realize electronic layers with high NW density. The former approach resulted in 7 NWs/μm for bottom-up ZnO and 3 NWs/μm for top-down Si NWs while the latter approach resulted in 7 NWs/μm with simultaneous assembly on 30x30 electrode patterns in a 3 cm x 3 cm area. The contact-printing system was used to fabricate ZnO and Si NW-based ultraviolet (UV) photodetectors (PDs) with a Wheatstone bridge (WB) configuration. The assembled V2O5 NWs were used to realize temperature sensors with sensitivity of 0.03% /K. The sensor arrays are suitable for tactile e-skin application. While the above focuses on realizing conventional sensing and addressing elements for e-skin, processing of a large amount of data from e-skin has remained a challenge, especially in the case of large area skin. A Neural NW Field Effect Transistors (υ-NWFETs) based hardware-implementable neural network (HNN) approach for tactile data processing in e-skin is presented in the final part of this thesis. The concept is evaluated by interfacing with a fabricated kirigami-inspired e-skin. Apart from e-skin for prosthetics and robotics, the presented research will also be useful for obtaining high performance flexible circuits needed in many futuristic flexible electronics applications such as smart surgical tools, biosensors, implantable electronics/electroceuticals and flexible mobile phones
    corecore