2,094 research outputs found

    Signal Detection Performance of Overlapped FFT Scheme with Additional Frames Consisting of Non-continuous Samples in Indoor Environment

    Get PDF
    Overlapped FFT has been proposed as a signal detection scheme in dynamic spectrum access to reduce the variance of the noise and improve the detection probability. However, the improvement of the detection probability in the conventional overlapped FFT is bounded with the upper limit of the overlap ratio. This paper proposes a new overlapped FFT scheme using additional frames. In the proposed scheme, in addition to the original FFT frames, new frames that consist of multiple subframes with non-continuous samples are constructed and included. It can realize the increase of the number of the FFT frames and the improvement of the detection probability compared with the conventional scheme. Numerical results through computer simulation show that the proposed scheme improves the detection probability by up to 0.07. On indoor channel models the proposed scheme also improves the detection probability. In addition, it is clarified that as the delay spread increases the detection probability reduces due to the correlation between the frames

    Approaches towards Implementation of Multi-bit Digital Receiver using Fast Fourier Transform

    Get PDF
    This paper compares different digital receiver signal processing schemes as applied to current ESM/RWR systems. The schemes include fast fourier transform (FFT)-based, FIR filter-based and mixed architectures. Use of polyphase FFT and IIR filters is also discussed. The specifications and signal processing requirements of a modern digital electronic warfare (EW) receiver are discussed. The design procedures and architectures for all the schemes are brought out. The tradeoffs involved in selection of different parameters for these schemes are also discussed. The digital receiver schemes are modeled and analyzed for different metrics such as, Parameter measurement accuracies, Pulse handling capability, Frequency separation capability, Number of multipliers required for implementation etc. The analysis is done for a 500 MHz BW digital receiver and assumes 8 bit ADC in the front end. The results obtained for the comparison are discussed in the paper. Limited simulations show that overlapped FFT scheme is a better approach for digital receiver processing.Defence Science Journal, 2013, 63(2), pp.198-203, DOI:http://dx.doi.org/10.14429/dsj.63.426

    A new data analysis framework for the search of continuous gravitational wave signals

    Full text link
    Continuous gravitational wave signals, like those expected by asymmetric spinning neutron stars, are among the most promising targets for LIGO and Virgo detectors. The development of fast and robust data analysis methods is crucial to increase the chances of a detection. We have developed a new and flexible general data analysis framework for the search of this kind of signals, which allows to reduce the computational cost of the analysis by about two orders of magnitude with respect to current procedures. This can correspond, at fixed computing cost, to a sensitivity gain of up to 10%-20%, depending on the search parameter space. Some possible applications are discussed, with a particular focus on a directed search for sources in the Galactic center. Validation through the injection of artificial signals in the data of Advanced LIGO first observational science run is also shown.Comment: 21 pages, 8 figure

    Machine Learning and Signal Processing Design for Edge Acoustic Applications

    Get PDF

    Machine Learning and Signal Processing Design for Edge Acoustic Applications

    Get PDF

    Automatic recognition of Persian musical modes in audio musical signals

    Get PDF
    This research proposes new approaches for computational identification of Persian musical modes. This involves constructing a database of audio musical files and developing computer algorithms to perform a musical analysis of the samples. Essential features, the spectral average, chroma, and pitch histograms, and the use of symbolic data, are discussed and compared. A tonic detection algorithm is developed to align the feature vectors and to make the mode recognition methods independent of changes in tonality. Subsequently, a geometric distance measure, such as the Manhattan distance, which is preferred, and cross correlation, or a machine learning method (the Gaussian Mixture Models), is used to gauge similarity between a signal and a set of templates that are constructed in the training phase, in which data-driven patterns are made for each dastgàh (Persian mode). The effects of the following parameters are considered and assessed: the amount of training data; the parts of the frequency range to be used for training; down sampling; tone resolution (12-TET, 24-TET, 48-TET and 53-TET); the effect of using overlapping or nonoverlapping frames; and silence and high-energy suppression in pre-processing. The santur (hammered string instrument), which is extensively used in the musical database samples, is described and its physical properties are characterised; the pitch and harmonic deviations characteristic of it are measured; and the inharmonicity factor of the instrument is calculated for the first time. The results are applicable to Persian music and to other closely related musical traditions of the Mediterranean and the Near East. This approach enables content-based analyses of, and content-based searches of, musical archives. Potential applications of this research include: music information retrieval, audio snippet (thumbnailing), music archiving and access to archival content, audio compression and coding, associating of images with audio content, music transcription, music synthesis, music editors, music instruction, automatic music accompaniment, and setting new standards and symbols for musical notation

    Non-Orthogonal Signal and System Design for Wireless Communications

    Get PDF
    The thesis presents research in non-orthogonal multi-carrier signals, in which: (i) a new signal format termed truncated orthogonal frequency division multiplexing (TOFDM) is proposed to improve data rates in wireless communication systems, such as those used in mobile/cellular systems and wireless local area networks (LANs), and (ii) a new design and experimental implementation of a real-time spectrally efficient frequency division multiplexing (SEFDM) system are reported. This research proposes a modified version of the orthogonal frequency division multiplexing (OFDM) format, obtained by truncating OFDM symbols in the time-domain. In TOFDM, subcarriers are no longer orthogonally packed in the frequency-domain as time samples are only partially transmitted, leading to improved spectral efficiency. In this work, (i) analytical expressions are derived for the newly proposed TOFDM signal, followed by (ii) interference analysis, (iii) systems design for uncoded and coded schemes, (iv) experimental implementation and (v) performance evaluation of the new proposed signal and system, with comparisons to conventional OFDM systems. Results indicate that signals can be recovered with truncated symbol transmission. Based on the TOFDM principle, a new receiving technique, termed partial symbol recovery (PSR), is designed and implemented in software de ned radio (SDR), that allows efficient operation of two users for overlapping data, in wireless communication systems operating with collisions. The PSR technique is based on recovery of collision-free partial OFDM symbols, followed by the reconstruction of complete symbols to recover progressively the frames of two users suffering collisions. The system is evaluated in a testbed of 12-nodes using SDR platforms. The thesis also proposes channel estimation and equalization technique for non-orthogonal signals in 5G scenarios, using an orthogonal demodulator and zero padding. Finally, the implementation of complete SEFDM systems in real-time is investigated and described in detail
    corecore