40 research outputs found

    An Empirical Study on the Language Modal in Visual Question Answering

    Full text link
    Generalization beyond in-domain experience to out-of-distribution data is of paramount significance in the AI domain. Of late, state-of-the-art Visual Question Answering (VQA) models have shown impressive performance on in-domain data, partially due to the language priors bias which, however, hinders the generalization ability in practice. This paper attempts to provide new insights into the influence of language modality on VQA performance from an empirical study perspective. To achieve this, we conducted a series of experiments on six models. The results of these experiments revealed that, 1) apart from prior bias caused by question types, there is a notable influence of postfix-related bias in inducing biases, and 2) training VQA models with word-sequence-related variant questions demonstrated improved performance on the out-of-distribution benchmark, and the LXMERT even achieved a 10-point gain without adopting any debiasing methods. We delved into the underlying reasons behind these experimental results and put forward some simple proposals to reduce the models' dependency on language priors. The experimental results demonstrated the effectiveness of our proposed method in improving performance on the out-of-distribution benchmark, VQA-CPv2. We hope this study can inspire novel insights for future research on designing bias-reduction approaches.Comment: Accepted by IJCAI202

    On the Value of Out-of-Distribution Testing: An Example of Goodhart's Law

    Full text link
    Out-of-distribution (OOD) testing is increasingly popular for evaluating a machine learning system's ability to generalize beyond the biases of a training set. OOD benchmarks are designed to present a different joint distribution of data and labels between training and test time. VQA-CP has become the standard OOD benchmark for visual question answering, but we discovered three troubling practices in its current use. First, most published methods rely on explicit knowledge of the construction of the OOD splits. They often rely on ``inverting'' the distribution of labels, e.g. answering mostly 'yes' when the common training answer is 'no'. Second, the OOD test set is used for model selection. Third, a model's in-domain performance is assessed after retraining it on in-domain splits (VQA v2) that exhibit a more balanced distribution of labels. These three practices defeat the objective of evaluating generalization, and put into question the value of methods specifically designed for this dataset. We show that embarrassingly-simple methods, including one that generates answers at random, surpass the state of the art on some question types. We provide short- and long-term solutions to avoid these pitfalls and realize the benefits of OOD evaluation

    Overcoming Language Priors in Visual Question Answering via Distinguishing Superficially Similar Instances

    Full text link
    Despite the great progress of Visual Question Answering (VQA), current VQA models heavily rely on the superficial correlation between the question type and its corresponding frequent answers (i.e., language priors) to make predictions, without really understanding the input. In this work, we define the training instances with the same question type but different answers as \textit{superficially similar instances}, and attribute the language priors to the confusion of VQA model on such instances. To solve this problem, we propose a novel training framework that explicitly encourages the VQA model to distinguish between the superficially similar instances. Specifically, for each training instance, we first construct a set that contains its superficially similar counterparts. Then we exploit the proposed distinguishing module to increase the distance between the instance and its counterparts in the answer space. In this way, the VQA model is forced to further focus on the other parts of the input beyond the question type, which helps to overcome the language priors. Experimental results show that our method achieves the state-of-the-art performance on VQA-CP v2. Codes are available at \href{https://github.com/wyk-nku/Distinguishing-VQA.git}{Distinguishing-VQA}.Comment: Published in COLING 202

    Estimating semantic structure for the VQA answer space

    Full text link
    Since its appearance, Visual Question Answering (VQA, i.e. answering a question posed over an image), has always been treated as a classification problem over a set of predefined answers. Despite its convenience, this classification approach poorly reflects the semantics of the problem limiting the answering to a choice between independent proposals, without taking into account the similarity between them (e.g. equally penalizing for answering cat or German shepherd instead of dog). We address this issue by proposing (1) two measures of proximity between VQA classes, and (2) a corresponding loss which takes into account the estimated proximity. This significantly improves the generalization of VQA models by reducing their language bias. In particular, we show that our approach is completely model-agnostic since it allows consistent improvements with three different VQA models. Finally, by combining our method with a language bias reduction approach, we report SOTA-level performance on the challenging VQAv2-CP dataset

    Robust Visual Question Answering: Datasets, Methods, and Future Challenges

    Full text link
    Visual question answering requires a system to provide an accurate natural language answer given an image and a natural language question. However, it is widely recognized that previous generic VQA methods often exhibit a tendency to memorize biases present in the training data rather than learning proper behaviors, such as grounding images before predicting answers. Therefore, these methods usually achieve high in-distribution but poor out-of-distribution performance. In recent years, various datasets and debiasing methods have been proposed to evaluate and enhance the VQA robustness, respectively. This paper provides the first comprehensive survey focused on this emerging fashion. Specifically, we first provide an overview of the development process of datasets from in-distribution and out-of-distribution perspectives. Then, we examine the evaluation metrics employed by these datasets. Thirdly, we propose a typology that presents the development process, similarities and differences, robustness comparison, and technical features of existing debiasing methods. Furthermore, we analyze and discuss the robustness of representative vision-and-language pre-training models on VQA. Finally, through a thorough review of the available literature and experimental analysis, we discuss the key areas for future research from various viewpoints.Comment: IEEE TPAMI (Under Review

    Language Prior Is Not the Only Shortcut: A Benchmark for Shortcut Learning in VQA

    Full text link
    Visual Question Answering (VQA) models are prone to learn the shortcut solution formed by dataset biases rather than the intended solution. To evaluate the VQA models' reasoning ability beyond shortcut learning, the VQA-CP v2 dataset introduces a distribution shift between the training and test set given a question type. In this way, the model cannot use the training set shortcut (from question type to answer) to perform well on the test set. However, VQA-CP v2 only considers one type of shortcut and thus still cannot guarantee that the model relies on the intended solution rather than a solution specific to this shortcut. To overcome this limitation, we propose a new dataset that considers varying types of shortcuts by constructing different distribution shifts in multiple OOD test sets. In addition, we overcome the three troubling practices in the use of VQA-CP v2, e.g., selecting models using OOD test sets, and further standardize OOD evaluation procedure. Our benchmark provides a more rigorous and comprehensive testbed for shortcut learning in VQA. We benchmark recent methods and find that methods specifically designed for particular shortcuts fail to simultaneously generalize to our varying OOD test sets. We also systematically study the varying shortcuts and provide several valuable findings, which may promote the exploration of shortcut learning in VQA.Comment: Fingdings of EMNLP-202
    corecore