31,806 research outputs found

    Overcoming Data Limitation in Medical Visual Question Answering

    Get PDF
    Traditional approaches for Visual Question Answering (VQA) require large amount of labeled data for training. Unfortunately, such large scale data is usually not available for medical domain. In this paper, we propose a novel medical VQA framework that overcomes the labeled data limitation. The proposed framework explores the use of the unsupervised Denoising Auto-Encoder (DAE) and the supervised Meta-Learning. The advantage of DAE is to leverage the large amount of unlabeled images while the advantage of Meta-Learning is to learn meta-weights that quickly adapt to VQA problem with limited labeled data. By leveraging the advantages of these techniques, it allows the proposed framework to be efficiently trained using a small labeled training set. The experimental results show that our proposed method significantly outperforms the state-of-the-art medical VQA. The source code is available at https://github.com/aioz-ai/MICCAI19-MedVQA

    Self-supervised vision-language pretraining for Medical visual question answering

    Full text link
    Medical image visual question answering (VQA) is a task to answer clinical questions, given a radiographic image, which is a challenging problem that requires a model to integrate both vision and language information. To solve medical VQA problems with a limited number of training data, pretrain-finetune paradigm is widely used to improve the model generalization. In this paper, we propose a self-supervised method that applies Masked image modeling, Masked language modeling, Image text matching and Image text alignment via contrastive learning (M2I2) for pretraining on medical image caption dataset, and finetunes to downstream medical VQA tasks. The proposed method achieves state-of-the-art performance on all the three public medical VQA datasets. Our codes and models are available at https://github.com/pengfeiliHEU/M2I2.Comment: 5 pages, 3 figure

    Masked Vision and Language Pre-training with Unimodal and Multimodal Contrastive Losses for Medical Visual Question Answering

    Full text link
    Medical visual question answering (VQA) is a challenging task that requires answering clinical questions of a given medical image, by taking consider of both visual and language information. However, due to the small scale of training data for medical VQA, pre-training fine-tuning paradigms have been a commonly used solution to improve model generalization performance. In this paper, we present a novel self-supervised approach that learns unimodal and multimodal feature representations of input images and text using medical image caption datasets, by leveraging both unimodal and multimodal contrastive losses, along with masked language modeling and image text matching as pretraining objectives. The pre-trained model is then transferred to downstream medical VQA tasks. The proposed approach achieves state-of-the-art (SOTA) performance on three publicly available medical VQA datasets with significant accuracy improvements of 2.2%, 14.7%, and 1.7% respectively. Besides, we conduct a comprehensive analysis to validate the effectiveness of different components of the approach and study different pre-training settings. Our codes and models are available at https://github.com/pengfeiliHEU/MUMC.Comment: accepted by MICCAI202

    Logical Implications for Visual Question Answering Consistency

    Get PDF
    Despite considerable recent progress in Visual Question Answering (VQA) models, inconsistent or contradictory answers continue to cast doubt on their true reasoning capabilities. However, most proposed methods use indirect strategies or strong assumptions on pairs of questions and answers to enforce model consistency. Instead, we propose a novel strategy intended to improve model performance by directly reducing logical inconsistencies. To do this, we introduce a new consistency loss term that can be used by a wide range of the VQA models and which relies on knowing the logical relation between pairs of questions and answers. While such information is typically not available in VQA datasets, we propose to infer these logical relations using a dedicated language model and use these in our proposed consistency loss function. We conduct extensive experiments on the VQA Introspect and DME datasets and show that our method brings improvements to state-of-the-art VQA models while being robust across different architectures and settings

    A Systematic Evaluation of GPT-4V's Multimodal Capability for Medical Image Analysis

    Full text link
    This work conducts an evaluation of GPT-4V's multimodal capability for medical image analysis, with a focus on three representative tasks of radiology report generation, medical visual question answering, and medical visual grounding. For the evaluation, a set of prompts is designed for each task to induce the corresponding capability of GPT-4V to produce sufficiently good outputs. Three evaluation ways including quantitative analysis, human evaluation, and case study are employed to achieve an in-depth and extensive evaluation. Our evaluation shows that GPT-4V excels in understanding medical images and is able to generate high-quality radiology reports and effectively answer questions about medical images. Meanwhile, it is found that its performance for medical visual grounding needs to be substantially improved. In addition, we observe the discrepancy between the evaluation outcome from quantitative analysis and that from human evaluation. This discrepancy suggests the limitations of conventional metrics in assessing the performance of large language models like GPT-4V and the necessity of developing new metrics for automatic quantitative analysis

    Towards Generalist Foundation Model for Radiology

    Full text link
    In this study, we aim to initiate the development of Radiology Foundation Model, termed as RadFM.We consider the construction of foundational models from the perspectives of data, model design, and evaluation thoroughly. Our contribution can be concluded as follows: (i), we construct a large-scale Medical Multi-modal Dataset, MedMD, consisting of 16M 2D and 3D medical scans. To the best of our knowledge, this is the first multi-modal dataset containing 3D medical scans. (ii), We propose an architecture that enables visually conditioned generative pre-training, allowing for the integration of text input interleaved with 2D or 3D medical scans to generate response for diverse radiologic tasks. The model was initially pre-trained on MedMD and subsequently domain-specific fine-tuned on RadMD, a radiologic cleaned version of MedMD, containing 3M radiologic visual-language pairs. (iii), we propose a new evaluation benchmark that comprises five tasks, aiming to comprehensively assess the capability of foundation models in handling practical clinical problems. Our experimental results confirm that RadFM significantly outperforms existing multi-modal foundation models. The codes, data, and model checkpoint will all be made publicly available to promote further research and development in the field

    Surveying Persons with Disabilities: A Source Guide (Version 1)

    Get PDF
    As a collaborator with the Cornell Rehabilitation Research and Training Center on Disability Demographics and Statistics, Mathematica Policy Research, Inc. has been working on a project that identifies the strengths and limitations in existing disability data collection in both content and data collection methodology. The intended outcomes of this project include expanding and synthesizing knowledge of best practices and the extent existing data use those practices, informing the development of data enhancement options, and contributing to a more informed use of existing data. In an effort to provide the public with an up-to-date and easily accessible source of research on the methodological issues associated with surveying persons with disabilities, MPR has prepared a Source Guide of material related to this topic. The Source Guide contains 150 abstracts, summaries, and references, followed by a Subject Index, which cross references the sources from the Reference List under various subjects. The Source Guide is viewed as a “living document,” and will be periodically updated

    PMC-VQA: Visual Instruction Tuning for Medical Visual Question Answering

    Full text link
    In this paper, we focus on the problem of Medical Visual Question Answering (MedVQA), which is crucial in efficiently interpreting medical images with vital clinic-relevant information. Firstly, we reframe the problem of MedVQA as a generation task that naturally follows the human-machine interaction, we propose a generative-based model for medical visual understanding by aligning visual information from a pre-trained vision encoder with a large language model. Secondly, we establish a scalable pipeline to construct a large-scale medical visual question-answering dataset, named PMC-VQA, which contains 227k VQA pairs of 149k images that cover various modalities or diseases. Thirdly, we pre-train our proposed model on PMC-VQA and then fine-tune it on multiple public benchmarks, e.g., VQA-RAD and SLAKE, outperforming existing work by a large margin. Additionally, we propose a test set that has undergone manual verification, which is significantly more challenging, even the best models struggle to solve

    MultiMedEval: A Benchmark and a Toolkit for Evaluating Medical Vision-Language Models

    Full text link
    We introduce MultiMedEval, an open-source toolkit for fair and reproducible evaluation of large, medical vision-language models (VLM). MultiMedEval comprehensively assesses the models' performance on a broad array of six multi-modal tasks, conducted over 23 datasets, and spanning over 11 medical domains. The chosen tasks and performance metrics are based on their widespread adoption in the community and their diversity, ensuring a thorough evaluation of the model's overall generalizability. We open-source a Python toolkit (github.com/corentin-ryr/MultiMedEval) with a simple interface and setup process, enabling the evaluation of any VLM in just a few lines of code. Our goal is to simplify the intricate landscape of VLM evaluation, thus promoting fair and uniform benchmarking of future models.Comment: Under review at MIDL 202
    corecore