8 research outputs found

    Control and State Estimation of the One-Phase Stefan Problem via Backstepping Design

    Full text link
    This paper develops a control and estimation design for the one-phase Stefan problem. The Stefan problem represents a liquid-solid phase transition as time evolution of a temperature profile in a liquid-solid material and its moving interface. This physical process is mathematically formulated as a diffusion partial differential equation (PDE) evolving on a time-varying spatial domain described by an ordinary differential equation (ODE). The state-dependency of the moving interface makes the coupled PDE-ODE system a nonlinear and challenging problem. We propose a full-state feedback control law, an observer design, and the associated output-feedback control law via the backstepping method. The designed observer allows estimation of the temperature profile based on the available measurement of solid phase length. The associated output-feedback controller ensures the global exponential stability of the estimation errors, the H1- norm of the distributed temperature, and the moving interface to the desired setpoint under some explicitly given restrictions on the setpoint and observer gain. The exponential stability results are established considering Neumann and Dirichlet boundary actuations.Comment: 16 pages, 11 figures, submitted to IEEE Transactions on Automatic Contro

    Control in moving interfaces and deep learning

    Full text link
    Tesis Doctoral inédita leída en la Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Matemáticas. Fecha de Lectura: 14-05-2021This thesis has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No.765579-ConFlex
    corecore