7 research outputs found

    Disturbance Model Identification and Model Free Synthesis of Controllers for Multivariable Systems

    Get PDF
    In this work, two different problems are addressed. In the first part, the problem of synthesizing a set of stabilizing controllers for unknown multivariable systems using direct data is analyzed. This is a model free approach to control design and uses only the frequency domain data of the system. It is a perfect complement to modern and post modern methods that begin the control design with a system model. A three step method, involving sequential design, search for stability boundaries and stability check is proposed. It is shown through examples that a complete set of stabilizing controllers of the chosen form can be obtained for the class of linear stable multivariable systems. The complexity of the proposed method is invariant with respect to the order of the system and increases with the increase in the number of input channels of the given multivariable system. The second part of the work deals with the problem of identification of model uncertainties and the effect of unwanted exogenous inputs acting on a discrete time multivariable system using its output information. A disturbance model is introduced which accounts for the system model uncertainties and the effect of unwanted exogenous inputs acting on the system. The frequency content of the exogenous signals is assumed to be known. A linear dynamical model of the disturbance is assumed with an input that has the same frequency content as that of the exogenous input signal. The extended model of the system is then subjected to Kalman filtering and the disturbance states estimates are used to obtain a least squares estimate of the disturbance model parameters. The proposed approach is applied to a linear multivariable system perturbed by an exogenous signal of known frequency content and the results obtained depict the efficacy of the proposed approach

    Output regulation for linear minimum phase systems with unknown order exosystem

    No full text

    미지의 정현파 외부 입력을 갖는 선형시스템을 위한 적응 출력 제어

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 전기·컴퓨터공학부, 2016. 2. 심형보.This dissertation investigates the output regulation problem (which is equivalent to the problem of asymptotic tracking and disturbance rejection when the reference inputs and the disturbances are generated by an autonomous differential equation, the so-called exosystem) for linear systems driven by unknown sinusoidal exosystems. Unlike previous researches, our ultimate goal is to achieve asymptotic regulation of the plant output to the origin for the sinusoidal exogenous signals (representing the reference inputs and disturbances) generated by the exosystems whose magnitudes, phases, bias, frequencies, and even the number of frequencies are all unknown. Here, the plant is linear time-invariant (LTI) single-input-single-output (SISO) systems (including non-minimum phase systems) without uncertainty. Before achieving the final control goal, we first start by considering an output regulation problem under the assumption that the number of frequencies contained in the exogenous inputs is known but magnitudes, phases, bias, and frequencies are unknown. To solve this problem, an add-on type output regulator with an adaptive observer is presented. The adaptive observer, based on the persistently exciting (PE) property, is used to estimate the frequencies of sinusoidal exogenous inputs as well as the states of plant and exosystem. Also, by add-on controller we mean an additional controller which runs harmonically with a preinstalled controller that has been in operation for the plant. When the desired performance of the preinstalled controller is not satisfactory, the add-on controller can be used. Some advantages of the proposed add-on controller include that it can be designed without much information about the preinstalled controller and it can be plugged in the feedback loop any time in operation without causing unnecessary transient response. Both simulation and experimental results of the track-following control for commercial optical disc drive (ODD) systems confirm the effectiveness of the proposed method. As the next step, we deal with the case where, as well as magnitudes, phases, bias, and frequencies, the number of frequencies contained in the exogenous inputs is unknown. To this end, a closed-form solution is given under the assumptions that the plant has hyperbolic zero dynamics (i.e., there is no zero on the imaginary axis of the complex plane), and that the number of unknown frequencies has known upper bound. In particular, the PE property is not necessary for the estimation of the unknown frequencies. For this, an adaptive observer is proposed to estimate the frequencies and the number of frequencies, simultaneously. This is important contribution, because, sufficient persistency of excitation is usually required since the unknown parameters are estimated by the adaptive control. Moreover, we propose a suitable dead-zone function with a computable dead-band only using the plant parameters to avoid the singularity problem in the transient-state and, at the same time, to achieve output regulation in the steady-state.Chapter 1 Introduction 1 1.1 Research Background 1 1.2 Contributions and Outline of the Dissertation 5 Chapter 2 Reviews of Related Prior Studies 9 2.1 Control Methods for Rejecting of Sinusoidal Disturbance 9 2.1.1 Adaptive Feedforward Cancellation (AFC) 9 2.1.2 Repetitive Control 12 2.1.3 Disturbance Observer (DOB) with Internal Model 15 2.2 Frequency Estimation Algorithms for Indirect Approach 19 2.2.1 Adaptive Notch Filtering 19 2.2.2 Phase-Locked Loops 20 2.2.3 Extended Kalman Filtering 21 2.2.4 Marinos Frequency Estimator 23 Chapter 3 Highlights of Output Regulation for Linear Systems 27 3.1 Problem Formulation 27 3.2 Output Regulation via Full Information 29 3.3 Output Regulation via Error Feedback 31 Chapter 4 Adaptive Add-on Output Regulator for Unknown Sinusoidal Exogenous Inputs 37 4.1 Add-on Output Regulator 39 4.1.1 Problem Formulation 39 4.1.2 Controller Design and Stability Analysis 41 4.2 Adaptive Add-on Output Regulator 44 4.2.1 Problem Formulation 44 4.2.2 Controller Design and Analysis 46 4.3 Industrial Application: Optical Disc Drive (ODD) Systems 54 4.3.1 Introduction of ODD Systems 54 4.3.2 Simulation Results 58 4.3.3 Experimental Results 63 Chapter 5 Adaptive Output Regulator for Unknown Number of Unknown Sinusoidal Exogenous Inputs 69 5.1 Problem Formulation 71 5.2 Adaptive Output Regulator 72 5.3 Constructive Proof of Theorem 5.2.1 75 5.4 Numerical Examples 88 Chapter 6 Conclusions and Further Issues 93 6.1 Conclusions 93 6.2 Further Issues 94 APPENDIX 97 A.1 Stabilizability and Detectability of the Plant in Chapter 4 97 A.2 Nonsingularity of the Matrix T(θ) in Chapter 4 99 A.3 Pseudo Code Implemented on the DSP Board in Chapter 4 99 A.4 Observability Property of the Pair (S, γ) in Chapter 5 101 A.5 Structure of the Matrix Tc(θ) in Chapter 5 102 A.6 Convergence Property of det2(i(t)) in Lemma 5.3.2 104 BIBLIOGRAPHY 109 국문초록 121Docto

    DISCRETE-TIME ADAPTIVE CONTROL ALGORITHMS FOR REJECTION OF SINUSOIDAL DISTURBANCES

    Get PDF
    We present new adaptive control algorithms that address the problem of rejecting sinusoids with known frequencies that act on an unknown asymptotically stable linear time-invariant system. To achieve asymptotic disturbance rejection, adaptive control algorithms of this dissertation rely on limited or no system model information. These algorithms are developed in discrete time, meaning that the control computations use sampled-data measurements. We demonstrate the effectiveness of algorithms via analysis, numerical simulations, and experimental testings. We also present extensions to these algorithms that address systems with decentralized control architecture and systems subject to disturbances with unknown frequencies

    Commande robuste et calibrage des systèmes de contrôle actif de vibrations

    Get PDF
    Dans cette thèse, nous présentons des solutions pour la conception des systèmes de contrôle actif de vibrations. Dans la première partie, des méthodes de contrôle par action anticipatrice (feedforward) sont développées. Celles-ci sont dédiées à la suppression des perturbations bande large en utilisant une image de la perturbation mesurée par un deuxième capteur, en amont de la variable de performance à minimiser. Les algorithmes présentés dans cette mémoire sont conçus pour réaliser de bonnes performances et maintenir la stabilité du système en présence du couplage positif interne qui apparaît entre le signal de commande et l'image de la perturbation. Les principales contributions de cette partie sont l'assouplissement de la condition de Stricte Positivité Réelle (SPR) par l'utilisation des algorithmes d'adaptation Intégrale + Proportionnelle et le développement de compensateurs à action anticipatrice (feedforward) sur la base de la paramétrisation Youla-Kučera. La deuxième partie de la thèse concerne le rejet des perturbations bande étroite par contre-réaction adaptative (feedback). Une méthode d'adaptation indirecte est proposée pour le rejet de plusieurs perturbations bande étroite en utilisant des filtres Stop-bande et la paramétrisation Youla-Kučera. Cette méthode utilise des Filtres Adaptatifs à Encoche en cascade pour estimer les fréquences de perturbations sinusoïdales puis des Filtres Stop-bande pour introduire des atténuations aux fréquences estimées. Les algorithmes sont vérifiés et validés sur un dispositif expérimental disponible au sein du département Automatique du laboratoire GIPSA-Lab de Grenoble.In this thesis, solutions for the design of robust Active Vibration Control (AVC) systems are presented. The thesis report is composed of two parts. In the first one, feedforward adaptive methods are developed. They are dedicated to the suppression of large band disturbances and use a measurement, correlated with the disturbance, obtained upstream from the performance variable by the use of a second transducer. The algorithms presented in this thesis are designed to achieve good performances and to maintain system stability in the presence of the internal feedback coupling which appears between the control signal and the image of the disturbance. The main contributions in this part are the relaxation of the Strictly Positive Real (SPR) condition appearing in the stability analysis of the algorithms by use of Integral + Proportional adaptation algorithms and the development of feedforward compensators for noise or vibration reduction based on the Youla-Kučera parameterization. The second part of this thesis is concerned with the negative feedback rejection of narrow band disturbances. An indirect adaptation method for the rejection of multiple narrow band disturbances using Band-Stop Filters (BSF) and the Youla-Kučera parameterization is presented. This method uses cascaded Adaptive Notch Filters (ANF) to estimate the frequencies of the disturbances' sinusoids and then, Band-stop Filters are used to shape the output sensitivity function independently, reducing the effect of each narrow band signal in the disturbance. The algorithms are verified and validated on an experimental setup available at the Control Systems Department of GIPSA-Lab, Grenoble, France.SAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF
    corecore