4,847 research outputs found

    High-Dimensional Feature Selection by Feature-Wise Kernelized Lasso

    Full text link
    The goal of supervised feature selection is to find a subset of input features that are responsible for predicting output values. The least absolute shrinkage and selection operator (Lasso) allows computationally efficient feature selection based on linear dependency between input features and output values. In this paper, we consider a feature-wise kernelized Lasso for capturing non-linear input-output dependency. We first show that, with particular choices of kernel functions, non-redundant features with strong statistical dependence on output values can be found in terms of kernel-based independence measures. We then show that the globally optimal solution can be efficiently computed; this makes the approach scalable to high-dimensional problems. The effectiveness of the proposed method is demonstrated through feature selection experiments with thousands of features.Comment: 18 page

    Feature selection guided by structural information

    Get PDF
    In generalized linear regression problems with an abundant number of features, lasso-type regularization which imposes an 1\ell^1-constraint on the regression coefficients has become a widely established technique. Deficiencies of the lasso in certain scenarios, notably strongly correlated design, were unmasked when Zou and Hastie [J. Roy. Statist. Soc. Ser. B 67 (2005) 301--320] introduced the elastic net. In this paper we propose to extend the elastic net by admitting general nonnegative quadratic constraints as a second form of regularization. The generalized ridge-type constraint will typically make use of the known association structure of features, for example, by using temporal- or spatial closeness. We study properties of the resulting "structured elastic net" regression estimation procedure, including basic asymptotics and the issue of model selection consistency. In this vein, we provide an analog to the so-called "irrepresentable condition" which holds for the lasso. Moreover, we outline algorithmic solutions for the structured elastic net within the generalized linear model family. The rationale and the performance of our approach is illustrated by means of simulated and real world data, with a focus on signal regression.Comment: Published in at http://dx.doi.org/10.1214/09-AOAS302 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore