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Abstract

In generalized linear regression problems with an abundant number of features,
lasso-type regularization which imposes an `1-constraint on the regression coefficients
has become a widely established technique. Crucial deficiencies of the lasso were un-
masked when Zhou and Hastie (2005) introduced the elastic net. In this paper, we pro-
pose to extend the elastic net by admitting general nonnegative quadratic constraints
as second form of regularization. The generalized ridge-type constraint will typically
make use of the known association structure of features, e.g. by using temporal- or
spatial closeness.
We study properties of the resulting ’structured elastic net’ regression estimation pro-
cedure, including basic asymptotics and the issue of model selection consistency. In
this vein, we provide an analog to the so-called ’irrepresentable condition’ which holds
for the lasso. An oracle property is established by incorporating a scaled `1-constraint.
Moreover, we outline algorithmic solutions for the structured elastic net within the
generalized linear model family. The rationale and the performance of our approach is
illustrated by means of simulated and real world data.
keywords: generalized linear model, regularization, sparsity, p � n, lasso, elastic net,
random fields, consistency, epiconvergence, model selection, signal regression.

1 Introduction

We consider regression problems with a linear predictor. Let X = (X1, . . . , Xp)> be a
random vector of real-valued features/predictors and let Y be a random response variable
taking values in a set Y ⊆ R. Given a realization x = (x1, . . . , xp)> of X, a prediction ŷ
for the response is obtained via a linear predictor

f(x;β0,β) = β0 + x>β, β = (β1, . . . , βp)>,

and a function ζ : R→ Y such that ŷ = ζ(f(x)). Given an i.i.d. sample S = {(xi, yi)}ni=1

from (Rp ×Y)n, an optimal set of coefficients β̂0, β̂ = (β̂1, . . . , β̂p)> can be determined by
minimization of a criterion of the form

(β̂0, β̂) = argmin
(β0,β)

n∑
i=1

L(yi, f(xi;β0,β)), (1.1)
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where L : Y × R → R+
0 is a loss function, assumed to be continuous and convex in the

second argument. The loss function is chosen according to the specific prediction problem,
so that large loss represents bad fit to the observed sample S. Approach (1.1) usually
yields poor estimates β̂0, β̂ if n is not one order of magnitude larger than p. In particular,
if p � n, approach (1.1) is not well-defined in the sense that there exist infinitely many
minimizers β̂0, β̂. One way to cope with a small n/p ratio is to employ a regularizer
Ω(β). A traditional approach due to Hoerl and Kennard (1970) minimizes the loss in Eq.
(1.1) subject to an `2-constraint on β. In the situation that β is supposed to be sparse,
Tibshirani (1996) proposed, under the acronym ’lasso’, to work with an `1-constraint, i.e.
one maximizes the loss subject to Ω(β) = ‖β‖1 < s, s > 0. The latter is particularly
attractive if one is interested in feature selection, since one obtains estimates β̂j , j ∈
{1, . . . , p}, which equal exactly zero, such that feature j does not contribute to prediction,
for which we say that feature j is ’not selected’. Continuous shrinkage (Fan and Li (2001))
and the existence of efficient algorithms (Efron et al. (2004), Genkin et al. (2007)) for
determining the coefficients are further virtues of the lasso. Its limitations have recently
been revealed by several researchers. Zhou and Hastie (2005) pointed out that the lasso
degenerates in the p � n setting, where the lasso is able to select at most n features
(Rosset et al. (2004)). Furthermore, Zhou and Hastie stated that the lasso does not
distinguish between ’irrelevant’ and ’relevant but redundant’ features. In particular, if
there is a group of correlated features, then the lasso tends to select one arbitrary member
of the group while ignoring the remainder. The combined regularizer of the elastic net
Ω(β) = α ‖β‖1 + (1− α) ‖β‖2 , α ∈ (0, 1) is shown to provide remedy in this regard.
A second double regularizer - tailored to one-dimensional signal regression - is employed by
the fused lasso (Tibshirani et al. (2005)), who propagate Ω(β) = α ‖β‖1 + (1− α) ‖Dβ‖1,
where

D : Rp → Rp−1

(β1, . . . , βp)> 7→ ([β2 − β1], . . . , [βp − βp−1])>
(1.2)

is the first forward difference operator. The total variation regularizer is meaningful when-
ever there is an order relation, notably a temporal one, among the features. The fused
lasso has a property which can be beneficial for interpretation: it automatically clusters
the features, since the sequence β̂1, . . . , β̂p is blockwise constant.
In this paper, we study a regularizer which is intermediate between the elastic net and the
fused lasso. Our regularizer combines an `1-constraint with a quadratic form:

Ω(β) = α ‖β‖1 + (1− α)β>Λβ, (1.3)

where Λ = (ljj′)1≤j,j′≤p is assumed to be symmetric and positive semidefinite. Setting Λ =
I yields the elastic net. Therefore, expression (1.3) will be referred to as structured elastic
net regularizer. The inclusion of Λ aims at capturing the a priori association structure (if
available) of the features in more generality than the fused lasso. The structured elastic
net estimator is defined as

(β̂0, β̂) = argmin
(β0,β)

n∑
i=1

L(yi, f(xi;β0,β))

subject to α ‖β‖1 + (1− α)β>Λβ ≤ s, α ∈ (0; 1), s > 0,

(1.4)

which is equivalent to the Lagrangian formulation

(β̂0, β̂) = argmin
(β0,β)

n∑
i=1

L(yi, f(xi;β0,β)) + λ1 ‖β‖1 + λ2β
>Λβ, λ1, λ2 > 0. (1.5)
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The rest of the paper is organized as follows: in Section 2, we discuss the choice of the
matrix Λ, followed by an analysis of some important properties of our proposal (1.5) in
Section 3. Section 4 is devoted to asymptotics and consistency questions, motivating the
introduction of the adaptive structured elastic net. Section 5 presents three different al-
gorithms for computing the minimizers (1.5) in the generalized linear model family and
addresses fundamental questions of model selection and -inference. The practical perfor-
mance of the structured elastic net is contained in Section 6. Section 7 concludes with a
brief discussion and outlook. All proofs can be found in the Appendix.

2 Structured features

2.1 Motivation

A considerable fraction of contemporary regression problems is characterized by a large
number of features, which is either of the same order of magnitude as the sample size or
even several orders larger (p� n). Common instances thereof are feature sets consisting of
sampled signals, pixels of an image, spatially sampled data, or gene expression intensities.
Beside high dimensionality of the feature space, these examples have in common that the
feature set can be arranged according to an a priori association structure. If a sampled
signal does not vary rapidly, the influence of nearby sampling points on the response can
be expected to be similar; correspondingly, this applies to adjacent pixels of an image,
or, more general, to any other form of spatially linked features. In genomics, genes can
be categorized into functional groups, or one has prior knowledge of their functions and
interactions within biochemical reaction chains, so called pathways.
Figures 1 and 2 display two well-known examples, phoneme- and handwritten digit clas-
sification. These examples are well-apt to illustrate the idea of the structured elastic net
regularizer, since it is sensible to assume that the prediction problem is not only char-
acterized by smoothness with respect to a given structure, but also by sparsity: in the
phoneme classification example, visually only the first hundred frequencies seem to carry
information relevant to the prediction problem. A similar rationale applies to the second
example, where the arc of the numeral eight in the lower half of the picture is the eminent
characteristic that admits a distinction from the numeral nine.
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Figure 1: Phoneme data (Hastie et al. (1995)). The upper panel shows several thousand
log-periodogramms of the speech frames for the phonemes ’aa’ (as occuring in ’dark’) and
’ao’ (as occuring in ’water’). The classwise means are given by thick lines. We use linear
logistic regression to predict the phoneme given a log-periodogramm. The lower panel
depicts the resulting coefficients when using the lasso (left panel), a first-order difference
penalty (right panel), and a combination thereof, which we term ’structured elastic net’
(middle panel).
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Figure 2: Handwritten digit recognition dataset (Le Cun et al. (1989)). One observation
is given by a greyscale image composed of 16 × 16 pixels. The upper panel shows the
contour of the pixel-wise means for the numerals ’8’ and ’9’. We use a training set of
1500 observations of eights and nines as input for linear logistic regression. The lower
panel depicts the coefficient surfaces for the lasso (left panel), a discrete Laplacian penalty
according to the grid structure (right panel), and a combination, the structured elastic net
(middle panel).

2.2 Gauss-Markov random fields

Given a large, but structured set of features, its structure can be exploited to cope with
high dimensionality in regression estimation. The estimands {βj}pj=1 form a finite set such
that their prior dependence structure can conveniently be described by means of a graph
G = (V,E), V = {β1, . . . , βp}, E ⊂ V ×V . We exclude loops, i.e. (βj , βj) /∈ E for all j. The
edges may additionally be weighted by a function w : E → R, w((βj , βj′)) = w((βj′ , βj)) for
all edges in E. We will use the notation βj ∼ βj′ to express that βj and βj′ are connected
by an edge in G. The weight function can be extended to a function on V × V by setting
w((βj , βj′)) = w((βj′ , βj)) = 0 if (βj , βj′) /∈ E.

The graph is interpreted in terms of Gauss-Markov random fields (Besag (1974); Rue and
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Figure 3: A collection of some graphs. A path and a grid (left panel), a rooted tree (middle
panel) and an irregular graph describing a part of the so-called MAPK signaling pathway
(right panel).

Held (2001)). In our setup, the pairwise Markov property reads

¬ βj ∼ βj′ ⇔ βj |= βj′ | V \ {βj , βj′}, (2.1)

with |= denoting conditional independence. Property (2.1) is conform to the following
choice for the precision matrix Λ = (ljj′)1≤j,j′≤p:

ljj′ =

{∑p
k=1 |w((βj , βk))| if j = j′,

−w((βj , βj′)) if j 6= j′,
(2.2)

which is singular in general. If sign{w((βj , βj′))} ≥ 0 for all (βj , βj′) in E, then Λ as
given in Eq. (2.2) is known as the combinatorial graph Laplacian in spectral graph theory
(Chung (1997)). It is straightforward to verify the following properties.

• β>Λβ =
∑
βj∼βj′

|w(βj , βj′)| (βj − sign
{
w((βj , βj′))

}
βj′)2 ≥ 0, (2.3)

where the sum is over all distinct edges in G, and ’distinct’ is understood with respect
to the relation (βj , βj′) = (βj′ , βj) for all j, j′.

• If G is connected and sign
{
w((βj , βj′))

}
≥ 0 for all (βj , βj′) in E, the nullspace of Λ

is spanned by the vector of ones 1.

While we have started in full generality, the choice w((βj , βj′)) ∈ {0, 1} for all j, j′ will
frequently be the standard choice in practice. In this case, the quadratic form captures
local fluctuations of β w.r.t. G. As a simple example, one may take G as the path on p
vertices so that expression (2.3) equals the summed squared forward differences

p∑
j=2

(βj − βj−1)2 = ‖Dβ‖2 = β>D>Dβ, (2.4)

where D is defined in Eq. (1.2). More complex graphical structures can be generated
from simple ones using the notion of Cartesian products of graphs. Given two unweighted
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graphs G = (V,E) and G′ = (V ′, E′), their Cartesian product is defined as

G × G′ = (V×, E×), V× = V × V ′,
E× = {((j, k), (j′, k′)) ∈ V× × V× : (j, j′) ∈ E ∧ k = k′ ∨ (k, k′) ∈ E′ ∧ j = j′}.

(2.5)

In terms of adjacency matrices A = (ajj′ = I(j G∼ j′)) and A′ = (akk′ = I(k G
′
∼ k′)), where

I is the indicator function, definition (2.5) can more comfortably be expressed as

A× = A⊗ I ′ + I ⊗A′, (2.6)

where A× denotes the adjacency matrix of G × G′, I and I ′ are identity matrices with
dimensions equal to the number of vertices in G and G′, respectively, and ⊗ denotes the
Kronecker product. It is easy to see that this construction yields a regular grid on p × p′
vertices if G is chosen as p-path and G′ as p′-path, in which case Λ equals the usual
discretization of the Laplacian ∆ acting on functions defined on R2. Regularizers built
up from discrete differences have already seen frequent use in high-dimensional regression
estimation. Examples comprise penalized discriminant analysis (Hastie et al. (1995)) and
spline smoothing (Eilers and Marx (1996)).

3 Properties

3.1 Bayesian and geometric interpretation

In the setup of Section 1, consider the regularizer

Ω(β) = λ1 ‖β‖1 + λ2β
>Λβ, λ1, λ2 > 0.

It has a nice Bayesian interpretation when the loss function L is of the form

L(y, f(x;β0,β)) = φ−1(b(f(x))− yf(x)) + c(y, φ), (3.1)

i.e. the loss function equals the negative log-likelihood of a generalized linear model in
canonical parametrization, which will primarily be studied in this paper. Models of this
class are characterized by

Y |X = x ∼ simple exponential family,

ŷ = E[Y |X = x] = µ =
d

df
b(f(x)),

var[Y |X = x] = φ
d2

df2
b(f(x)).

(3.2)

The form (3.1) is versatile, including classical linear regression with Gaussian errors, lo-
gistic regression for classification, and Poisson regression for count data. Given a loss
from the class (3.1), the regularizer Ω(β) can be interpreted as combined Laplace (double
exponential)-Gaussian prior p(β) ∝ exp(−Ω(β)), for which the structured elastic net es-
timator (1.5), provided p(β0) ∝ 1, is the maximum posterior (MAP) estimator given the
sample S. Note that if p > n, depending on the matrix Λ, p(β) is not necessarily proper.
It is instructive to consider two predictors, i.e. β = (β1, β2)>. Figure 4 gives a geometric

interpretation for the basic choices Λ =
(

1 −1
−1 1

)
and Λ =

(
1 1
1 1

)
, corresponding

6
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Figure 4: Geometry of the lasso and the elastic net (upper left panel), the fused lasso
(upper right panel) and the structured elastic net (positive prior correlation: left panel,
negative prior correlation: right panel).

to positive- and negative prior correlation, respectively.
The contour lines of the structured elastic net penalty contain elements of a diamond and
an ellipsoid. The higher λ2 in relation to λ1, the ellipsoidal part becomes more narrower
and more stretched. The sign of the off-diagonal element of Λ determines the orientation
of the ellipsoidal part.

3.2 Grouping properties

For the elastic net, Zhou and Hastie (2005) provided an upper bound on the absolute
distances |β̂elastic net

j − β̂elastic net
j′ |, j, j′ = 1, . . . , p, in terms of the sample correlations, to

which Zhou and Hastie referred to as ’grouping property’. We provide similar bounds
here. For what follows, let S be a sample as in Section 1. We introduce a design matrix
X = (xij)1≤i≤n

1≤j≤p
and denote by Xj = (x1j , . . . , xnj)> the realizations of predictor j in

S, and the response vector is defined by y = (y1, . . . , yn)>. For the remainder of this
section, we assume that the responses are centered and that the predictors are centered
and standardized to unit Euclidean length w.r.t the sample S, i.e.

n∑
i=1

yi =
n∑
i=1

xij = 0,
n∑
i=1

x2
ij = 1, j = 1, . . . , p. (3.3)

Proposition 1. Let p = 2, let the loss function be of the form (3.1), let ρ = 〈X1,X2〉

7



denote the sample correlation of X1 and X2, and let Λ = 1
2

(
1 s
s 1

)
, s ∈ {−1, 1}. If

−sβ̂1β̂2 > 0, then

|β̂1 + sβ̂1| ≤
1

2λ2

√
2(1 + sρ) ‖y‖ .

In particular, Proposition 1 implies that if X1 = −sX2, β̂1 = −sβ̂2.
In a similar way as done in Wang et al. (2006), we can obtain a bound for loss functions
which are either uniformly Lipschitz as function of the margin (classification) or as function
of the residual (regression).

Proposition 2. In the setup of Proposition 1 and for a positive finite constant C, assume
that one of the following conditions holds:

(i) L(y, f(x)) = L(m), m = yf(x), y ∈ {−1, 1}, |L(m) − L(m′)| ≤ C|m −m′| for all
m,m′.

(ii) L(y, f(x)) = L(r), r = y − f(x), |L(r)− L(r′)| ≤ C|r − r′| for all r, r′.

Then:
|β̂1 + sβ̂2| ≤

C

λ2

√
n2(1 + sρ).

Proposition 2 provides a grouping property for important loss functions, covering the hinge
loss of support vector classification as well as least absolute deviation- and quantile regres-
sion.

3.3 Decorrelation

Let us now consider the important special case

L(y, f(x;β)) = (y − x>β)2,

which corresponds to classical linear regression. The constant term β0 is omitted, since we
work with centered data. The structured elastic net estimator can then be written as

β̂ = argmin
β
−2y>Xβ + β>[C + λ2Λ]β + λ1 ‖β‖1 , C = X>X,

= argmin
β
−2y>Xβ + β>C̃β + λ1 ‖β‖1 , C̃ = X>X + λ2Λ.

(3.4)

Note that for standardized predictors, C equals the matrix of sample correlations ρjj′ =〈
Xj ,Xj′

〉
, j, j′ = 1, . . . , p. With a large number of predictors or elements ρjj′ with large

|ρjj′ |, C is known to yield severely unstable ordinary least squares (ols) estimates β̂ols
j , j =

1, . . . , p. If the two underlying random variables Xj andXj′ are highly positively correlated,
this will likely translate to high sample correlations of Xj and Xj′ , which in turn yields
a strongly negative correlation between β̂ols

j and β̂ols
j′ and as consequence high variances

var[β̂ols
j ] and var[β̂ols

j′ ]. The modified matrix C̃ can be written as C̃ = V
1/2
Λ RΛV

1/2
Λ ,

VΛ = diag(1 + λ2
∑p

k=1 |l1k|, . . . , 1 + λ2
∑p

k=1 |lpk|), and the modified correlation matrix
RΛ has entries

ρΛ,jj′ =
ρjj′ + λ2ljj′√

1 +
∑p

k=1 |ljk|
√

1 +
∑p

k=1 |lj′k|
, j, j′ = 1, . . . , p.

8



In the light of Section 2, the entries of RΛ combine sample- and prior correlations. Decor-
relation occurs if ρjj′ ≈ −λ2ljj′ , i.e. if prior- and sample correlations are in accordance.
The grouping- and decorrelation effect of our proposal are visualized in Figure 5 for two
predictors, in which case the minimizer (3.4) can be determined analytically (see Appendix
B). The figure unmasks the weakness of ordinary least squares in the case of high sample
correlations, as well as the tendency of the lasso not to jointly include the two predictors.
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Figure 5: The case of two predictors for ordinary least squares, lasso and the structured
elastic net. For both panels, the predictor-response correlations are set to X>1 y = 0.9
and X>2 y = 0.7, respectively, ‖y‖ = 1. The correlation of the predictors ρ = X>1 X2

varies from 0.4 to 0.9 (horizontal axis). The restriction ρ ∈ [0.4; 0.9] guarantees a valid
correlation structure between X1,X2 and y. The left panel displays the behaviour of the
ols estimator (grey) with β̂ols

1 , β̂ols
2 becoming more and more divergent, as does the lasso

(black). The right panel depicts the same situation for the structured elastic net with
Λ = (ljj′)1≤j,j′≤2, l11 = l22 = 1, l12 = l21 = −1 for λ2 ∈ {0.25, 2.5} and λ1 as for the left
panel. Note that the right panel does not contradict Proposition 1, since ρ → 1 implies
X>1 y → X>2 y, whereas are X>1 y and X>2 y are kept fixed here. Further note that the
situation displayed in the figure does not operate in terms of true coefficients, but studies
instead the presence/absence of a grouping effect in dependence of a given data situation.

3.4 Uniqueness

Let us maintain the setup of the previous subsection. As pointed out by several authors,
the lasso lacks uniqueness if p � n or if there is collinearity among X1, . . . ,Xp. In
this respect, the lasso differs from the elastic net, which is always determined uniquely.
Concerning our proposal, whether the minimizer (3.4) is unique for p � n depends on
Λ. Roughly speaking, if Λ provides a sufficient amount of prior information, then we
have a unique minimizer. Uniqueness typically fails when Λ has nonzero entries only for
a small fraction of the predictors. A sufficient condition can be derived by the following
consideration: since Λ is assumed to be symmetric positive semidefinite, there exists a
factorization Λ = Q>Q. The stabilized covariance matrix in Eq. (3.4) can be written as

C̃ = X̃>X̃, X̃ =

(
X

λ
1/2
2 Q

)
.

9



Thus, if rank(X) + rank(λ1/2
2 Q) ≥ p and the rows of X combined with the rows of λ1/2

2 Q

form a linearly independent set, C̃ is of full rank and hence the structured elastic net
is unique. In addition, this shows that even for p � n, in principle all features can be
selected.

3.5 Double shrinkage

Zhou and Hastie (2005) pointed out that the elastic net effects twofold shrinkage of the
coefficient vector towards zero, one produced by the `1- and a second one by the `2-
constraint. In practice, this has the consequence that the elastic net estimates are shrunken
too heavily, such that they are even outperformed by the lasso. For this reason, Zhou
and Hastie (2005) suggest to undo the shrinkage induced by the `2-constraint, rescaling
all coefficients by the factor (1 + λ2). A similar rationale might be appropriate for our
proposal, depending on the structure of Λ. For instance, if Λ = D>D (cf. Eq. (2.4)),
then the shrinkage target of Λ is the constant vector. In the presence of sparsity, the
constant vector is roughly equal to the zero vector. Since this is already the shrinkage
target of the `1-constraint, we will observe double shrinkage as for the elastic net. As a
remedy, one might consider to rescale the coefficients:

β̂j ← (1 + λ2ljj)β̂j , j = 1, . . . , p.

4 Consistency

The asymptotic analysis presented in this sections closely follows the ideas of Knight and
Fu (2000) and Zhou (2006). Both have studied asymptotics for the lasso in linear regression
under the following conditions.

(C.1) Given a sample S of size n, the data assumed to be generated according to the model

y = Xβ∗ + ε,

with β∗ = (β∗1 , . . . , β
∗
p)> denoting the true parameter vector. The error terms ε =

(ε1, . . . , εn)> are assumed to be i.i.d. with expectation 0 and constant variance 0 <
σ2 <∞.

(C.2)

Cn =
1
n

n∑
i=1

xix
>
i =

1
n
X>nXn → C as n→∞,

and the limit C is strictly positive definite.

(C.3)
1
n

max
1≤i≤n

x>i xi → 0 as n→∞.

Conditions (C.2) and (C.3) are weak in the sense that both hold if the xi are i.i.d. with finite
second moments. Conditions (C.1)-(C.3) ensure

√
n-consistency and asymptotic normality

of the ordinary least squares estimator, i.e.

√
n(β̂ols

n − β∗)
D→ N(0, σ2C−1),

10



where here and in the following, the sub- or superscript indicates that the corresponding
quantity depends on the sample size n. Using conditions (C.1)-(C.3), Knight and Fu (2000)
proved for the lasso that β̂lasso is

√
n-consistent for β∗ provided λn1/

√
n → λ0

1 ≥ 0. Zhou
(2006) has shown that while taking λn1 = O(

√
n) provides the optimal rate for estimation,

it leads to inconsistent feature selection. Define the active set as A = {j : β∗j 6= 0} and
Ac = {1, . . . , p} \A and let δ be an estimation procedure producing an estimate β̂δ. Then
δ is said to consistent in feature selection if

lim
n→∞

P(β̂δj,n 6= 0) = 1 for j ∈ A,

lim
n→∞

P(β̂δj,n = 0) = 1 for j ∈ Ac.

Moreover, Zhou (2006) and Zhao and Yu (2006) have shown that if λn1/n→ 0 and λn1/
√
n→

∞, the lasso has to satisfy a nontrivial condition, the so-called ’irrepresentable condition’,
to be selection consistent. Zhou (2006) proposed the adaptive lasso, a two-step estimation
procedure, to fix this deficiency. In the following, these results will be adapted to the
presence of a second quadratic penalty term.

Theorem 1. Let conditions (C.1)-(C.3) hold. Define

β̂n = argmin
β
‖yn −Xnβ‖2 + λn1 ‖β‖1 + λn2β

>Λβ.

Assume that λn1/
√
n→ λ0

1 ≥ 0 and λn2/
√
n→ λ0

2 ≥ 0. Consider the random function

V (u) = −2u>w + u>Cu

+ λ0
1

p∑
j=1

uj sign(β∗j )I(β∗j 6= 0) + |uj |I(β∗j = 0)

+ 2λ0
2u
>Λβ∗, w ∼ N(0, σ2C).

Then
√
n(β̂n − β∗)

D→ argminV (u).

Theorem 1 is analogous to Theorem 2 in Knight and Fu (2000) and establishes
√
n-

consistency of β̂n, provided λn1 and λn2 are O(
√
n). Theorem 1 admits a straightforward

extension to the class of generalized linear models (cf. Eq. (3.2)). Let the true model be
defined by

E[Y |X = x] = b′(f(x;β∗)), f(x) = x>β∗.

For the sake of a clearer presentation, we assume that β∗0 = 0. We study the estimator

β̂n = argmin
β

2φ−1
n∑
i=1

b(f(xi;β))− yif(xi;β) + λn1 ‖β‖1 + λn2β
>Λβ. (4.1)

We work with the following regularity conditions.

(G.1) The expected Fisher information

I = E[φ−1b′′(f(X);β∗)XX>]

is finite and strictly positive definite.
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(G.2) There exists a function M and an open neighbourhood U of β∗ such that for all
β ∈ U

|b′′′(f(x);β)| ≤M(x) <∞ for all x,

and
E[M(X) |XjXkXl|] <∞ ∀1 ≤ j, k, l ≤ p.

Condition (G.2) is necessary for a Taylor expansion argument, as explained in the Ap-
pendix.

Theorem 2. Let conditions (G.1) and (G.2) hold, consider the estimator (4.1) and let
λn1/
√
n→ λ0

1 ≥ 0 and λn2/
√
n→ λ0

2 ≥ 0. Consider the random function

W (u) = −2u>w + u>Iu

+ λ0
1

p∑
j=1

uj sign(β∗j )I(β∗j 6= 0) + |uj |I(β∗j = 0)

+ 2λ0
2u
>Λβ∗, w ∼ N(0, I).

Then
√
n(β̂n − β∗)

D→ argminW (u).

Now let us turn to the question of selection consistency. In the situation of Theorem 1, if λn1
and λn2 both areO(

√
n), then β̂n cannot be selection consistent. To see this, let û denote the

minimizer of V (u). Without loss of generality, let us assume that β∗ = ([β∗A]>, [β∗Ac ]>)>,
where here and in the following, the subscripts A and Ac refer to active and inactive
set, respectively. Selection consistency requires that û is of the form û = (û>A,0

>)>.
Evaluation of V (u) at û yields:

V (û) = −2û>AwA + û>ACAûA + λ0
1û
>
AsA + 2λ0

2û
>
AΛAβ

∗
A, sA = (sign(β∗j ), j ∈ A)>.

Since ûA is a minimizer, differentiation yields

ûA = C−1
A

(
wA −

λ0
1

2
sA − λ0

2ΛAβ
∗
A

)
. (4.2)

Now consider the partitioning schemes

C =
(

CA CAAc

CAcA CAc

)
and Λ =

(
ΛA ΛAAc

ΛAcA ΛAc

)
. (4.3)

Since ûAc = 0, the Karush-Kuhn-Tucker (KKT) conditions imply that

|λ0
2ΛAcAβ

∗
A +CAcAûA −wAc | ≤ λ0

1

2
1, (4.4)

where the inequality is interpreted componentwise. Substituting the right hand side of Eq.
(4.2) into Eq. (4.4) and rearranging terms, one obtains∣∣∣ [ΛAcA −CAcAC

−1
A ΛA

]
λ0

2β
∗
A +CAcAC

−1
A

(
wA −

λ0
1

2
sA

)
−wAc

∣∣∣ ≤ λ0
1

2
1. (4.5)

Since w is random quantity, the system of inequalities only holds with a certain probability,
implying inconsistency of selection in general. In addition, the system (4.5) shows that
selection consistency depends on C, Λ and also β∗A. Selection consistency can be achieved
if one lets λn1 , λ

n
2 grow more strongly and if the quantities C, Λ and β∗A fulfill a nontrivial

condition, which can be seen as analog to the irrepresentable condition of the lasso.
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Theorem 3. In the setup of Theorem 1, let λn1/n → 0, λn1/
√
n → ∞, λn2/λ

n
1 → R, 0 <

R <∞. Then, if selection consistency holds, the following condition must be fulfilled: there
exists a sign vector sA such that

| −CAcAC
−1
A (sA + 2RΛAβ

∗
A) + 2RΛAcAβ

∗
A| ≤ 1,

where the inequality is interpreted componentwise.

While this condition is interesting from a theoretical point of view, it is impossible to check
in practice, since β∗A is unknown.
Selection consistency can be achieved by a two-step estimation strategy introduced in
Zhou (2006) under the name adaptive lasso, which replaces `1-regularization uniform in
βj , j = 1, . . . , p, by a weighted variant J(β) =

∑p
j=1 ωj |βj |, where the weights {ωj}pj=1 are

determined adaptively as function of an ’initial estimator’ β̂init:

ωj = |β̂init
j |−γ , γ > 0, j = 1, . . . , p. (4.6)

In terms of selection consistency this strategy turns out to be favourable for our proposal,
too.

Theorem 4. In the setup of Theorem 1, define

β̂adaptive
n = argmin

β
‖yn −Xnβ‖2 + λn1

p∑
j=1

ωj |βj |+ λn2β
>Λβ,

where the weights are as in Eq. (4.6), and suppose that the initial estimator satisfies

rn(β̂n − β∗) = OP(1), rn →∞ as n → ∞.

Furthermore, suppose that

rγnλ
n
1n
−1/2 →∞, λn1n

−1/2 → 0, λn2n
−1/2 → λ0

2 ≥ 0

as n → ∞. Then

(1)
√
n(β̂adaptive

A,n − β∗A) D→ N(−λ0
2C
−1
A ΛAβ

∗
A,C

−1
A ),

(2) lim
n→∞

P(β̂adaptive
Ac,n = 0) = 1.

Theorem 4 implies that the adaptive structured elastic net β̂adaptive is an oracle estimation
procedure (Fan and Li (2001)) if the bias term in (1) vanishes, which is the case if β∗A resides
in the nullspace of ΛA. Interestingly, if Λ equals the combinatorial graph Laplacian (cf.
Section 2.1), this happens if and only if β∗A has constant entries and A specifies a connected
component in the underlying graph.
Concerning the choice of the initial estimator, the ridge estimator has worked well for us in
practice, provided the ridge parameter is chosen appropriately. While γ may be treated as
a tuning parameter, we have set γ equal to 1 in all our data analyses. Finally, we remark
that while Theorem 4 applies to linear regression, it can be extended to hold for generalized
linear models, in a similar way as the extension of Theorem 1 to Theorem 2.

5 Computation

This section discusses aspects concerning computation and model selection for the struc-
tured elastic net estimator when the loss function is the negative log-likelihood of a gener-
alized linear model (3.1).
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5.1 Data augmentation

From the discussions in Subsections 3.3 and 3.4, it follows that the structured elastic net
for squared loss, assuming centered data, can be recast as lasso on augmented data

X̃ =

(
X

λ
1/2
2 Q

)
(n+p)×p

, ỹ =
(
y
0

)
(n+p)×1

, Λ = Q>Q,

and hence algorithms available for computing the lasso, notably LARS (Efron et al. (2004))
may be applied, which computes for fixed λ2 and varying λ1 the piecewise linear solution
path β̂(λ1;λ2). In order to fit arbitrary regularized generalized linear models, the aug-
mented data representation has to be modified. Without regularization, estimators in
generalized linear models are obtained by iteratively computing weighted least squares
estimators:(

β̂
(k+1)
0

β̂(k+1)

)
=
(

[1 X]>W (k)[1 X]
)−1

[1 X]>W (k)z(k),

z(k) = f (k) + [W (k)]−1(y − µ(k)),

f (k) = (f (k)
1 , . . . , f (k)

n )>, f
(k)
i = β̂

(k)
0 + x>i β̂

(k), i = 1, . . . , n,

µ(k) = (µ(k)
1 , . . . , µ(k)

n )>, µ
(k)
i = b′(f (k)

i ), i = 1, . . . , n,

W (k) = diag(w(k)
1 , . . . , w(k)

n ), w
(k)
i = φ−1b′′(f (k)

i ), i = 1, . . . , n.

(5.1)

Note that the design matrix additionally includes a constant term 1. Turning back to the
structured elastic net, an adaptation of the augmented data approach iteratively determines(

β̂
(k+1)
0

β̂(k+1)

)
= argmin

(β0,β)

n+p∑
i=1

w̃
(k)
i

(
z̃
(k)
i − x̃

>
i

(
β0

β

))2

+ λ1 ‖β‖1 ,

with

w̃
(k)
i = w

(k)
i , i = 1, . . . , n, as in Eq. (5.1), w̃

(k)
i = 1, i = (n+ 1), . . . , (n+ p),

z̃
(k)
i = z

(k)
i i = 1, . . . , n, as in Eq. (5.1), z̃

(k)
i = 0, i = (n+ 1), . . . , (n+ p),

x̃i = (1 x>i )>, i = 1, . . . , n, x̃i = (0
√
λ2q

>
i )>, i = (n+ 1), . . . , (n+ p),

with q>i denoting the i-th row of Q.

5.2 Cyclical coordinate descent

Recently, cyclical coordinate descent (CCD) approaches for obtaining the lasso solution in
generalized linear models have gained much popularity, e.g. Genkin et al. (2007), Wu and
Lange (2008), Friedman et al. (2007). The latter have studied convex functions of the form

F (β) = S(β) + J(β), β = (β1, . . . , βp)>, J(β) =
p∑
j=1

ιj(βj), (5.2)

to be minimized w.r.t. β. We suppose that F (β) is convex, that S(β) is smooth and that
J(β) is continuous and separable in the βj . CCD optimizes one coordinate at a time, with
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the remaining ones kept fixed. Convergence analysis for this setup is studied in Tseng
(2001). As reported in Friedman et al. (2007), the CCD approach turns out be remarkably
efficient as well as versatile, allowing the computation of the lasso, the elastic net and
several related procedures along a fine grid of λ1-values, using the current estimate as
’warm start’ for the next grid point. While CCD could be applied to the augmented data
representation of the previous subsection to compute the structured elastic net estimator,
we prefer a CCD algorithm directly adapted to our specific problem, without the need to
determine the root Q. Note that such an algorithm is possible, since the structured elastic
net criterion matches the structure of F (β) in Eq. (5.2) with ιj = λ1|βj |, j = 1, . . . , p.We
first state the algorithm for squared loss, and straightforward modifications admit the
extension to generalized linear models.
Consider the structured elastic net estimator for L(y, f(x;β0,β)) = (y − β0 − x>β)2.
The aim is to determine an estimate β̂j given β̂0, β̂−j , β̂−j = (β̂1, . . . , β̂j−1, β̂j+1, . . . , β̂p)>.
Likewise, the j-th row of Λ can be divided into ljj and l−j = (ljj′)>j′ 6=j . The KKT conditions

imply that if β̂j = 0∣∣∣∣∣∣−2X>j

y − β̂0 −
∑
j′ 6=j

Xj′ β̂j′

+ 2λ2l
>
−jβ̂−j

∣∣∣∣∣∣ ≤ λ1, (5.3)

and otherwise,

−2X>j (y − β̂0 −Xβ̂) + 2λ2ljj β̂j + 2λ2l
>
−jβ̂−j + λ1 sign(β̂j) = 0. (5.4)

Solving for β̂j in Eq. (5.4) yields

β̂j =
X>j (rj − l>−jβ̂−j)−

λ1
2 sign(β̂j)

‖Xj‖2 + λ2ljj
,

rj = y − β̂0 −
∑
j′ 6=j

Xj′ β̂j′ .
(5.5)

Combining Eq. (5.3) with Eq. (5.4) yields the update formula

β̂j ←

[∣∣∣X>j rj − l>−jβ̂−j∣∣∣− λ1
2

]
+

sign(X>j rj − l>−jβ̂−j)

‖Xj‖2 + λ2ljj
, j = 1, . . . , p, [z]+ = max(z, 0).

For the intercept, we have the update

β̂0 ←
∑n

i=1 yi −
∑p

j=1Xj β̂j

n
.

For generalized linear models, the algorithm involves one outer loop in which the quantities
of iteratively weighted least squares (5.1) are updated, and one inner loop for CCD as just
described. To be more precise, given estimates β̂(k)

0 , β̂(k), we compute the W (k) and z(k) as
given in Eq. (5.1). Defining the working response z̃(k) = [W (k)]1/2z(k), X̃(k) = [W (k)]1/2X
and a modified intercept 1̃(k) = [W̃ (k)]1/21, the data (z̃(k), [1̃(k) X̃(k)]) can be plugged into
the CCD algorithm for squared loss. Once an inner loop has converged, the new estimates
β̂

(k+1)
0 , β̂(k+1) are used to obtain (z̃(k+1), [1̃(k+1) X̃(k+1)]).
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5.3 Goeman’s algorithm

The third algorithm we provide is an adaptation of a recent proposal in Goeman (2007),
which combines full gradient descent- with Newton-Raphson-steps in subdomains where the
gradient of the structured elastic net objective function is continuous. For a loss function
of the type (3.1), the gradient and the Hessian of the differentiable part of the structured
elastic net criterion are given by(

∇β0

∇β

)
=
(

−1>(y − µ(β0,β))
−X>(y − µ(β0,β)) + 2λ2Λ

)
,

∇2
β0,β =

(
∇2
β0

∂
∂β>
∇β0

∂
∂β0
∇β ∇2

β

)
=
(

1>W (β0,β)1 1>W (β0,β)X
X>W (β0,β)1 X>W (β0,β)X + 2λ2Λ

)
.

(5.6)

Let the superscript (k) refer to the iteration counter and let A denote the currently active
set, i.e. A = {j ∈ {1, . . . , p} : β̂(k)

j 6= 0}. In principle, the idea is to take gradient descent
steps until it is favourable to switch to Newton-Raphson. For the former, one looks for a
suitable descent direction v. For j ∈ A, the `1-part of the regularizer is differentiable as
well: combined with the gradient in Eq. (5.6), this yields descent directions

v0 ← −∇bβ(k)
0

, vA ← −[∇bβ(k) ]A − λ1 sign(β̂A),

where the evaluation of the sign function here and in the following is understood compo-
nentwise. For j ∈ Ac, we have to distinguish two cases. If |[∇bβ(k) ]j | > λ1, one enlarges
the active set, i.e. A ← A ∪ {j}, and sets vj ← −[∇bβ(k) ]j − λ1 sign([∇bβ(k) ]j). Otherwise,
there is no move for coordinate j : vj ← 0. We define v = (v1, . . . , vp)>. The next issue
to consider is the determination of an appropriate step length t for the gradient descent
update β̂(k+1) ← β̂(k) + tv. One has to take care that the stepsize is sufficiently small
in order to remain within a subdomain of gradient continuity, i.e. one has to ensure that
sign(β̂(k+1)) = sign(β̂(k)). This naturally imposes an upper bound on the step size, denoted
by tedge:

0 < tedge = min
j∈A

{
−
β̂

(k)
j

vj
: sign(β̂(k)

j ) = − sign(vj)

}
. (5.7)

In a subdomain of gradient continuity, assuming t < tedge, one can perform a quadratic Tay-
lor approximation of the objective function F (β0,β) around the current estimates β̂(k)

0 , β̂(k):

F (β̂(k)
0 , β̂(k) + tv) ≈ F (β̂0, β̂

(k))− tv>v +
1
2
t2v>∇2bβ(k)v. (5.8)

Differentiating the r.h.s. of approximation (5.8) with respect to t and setting the result
equal to zero, it follows that the minimum of the Taylor approximation is achieved by
choosing the stepsize

topt =
v>v

v>∇2bβ(k)
v
,

provided the denominator is nonzero. At this place, one checks whether topt < tedge. If
this is the case, the gradient descent update is performed with step size t = ttopt, i.e.

β̂(k+1) ← β̂(k) + toptv.
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Otherwise, the active set is reduced: A ← A \ {j0} and β̂
(k+1)
j0

← 0, where j0 is the index
for which the minimum in Equation (5.7) is attained, and the gradient descent step is
performed with stepsize tedge for the reduced active set. For the intercept, one may use
β̂

(k+1)
0 = β̂

(k)
0 + t0v0, t0 = 1/∇2bβ(k)

0

.

Near the minimum, Newton-Raphson can considerably speed up convergence. Newton-
Raphson-steps are only possible within a single subdomain of gradient continuity. As
Newton-Raphson-steps are computationally expensive, they should be avoided if they are
likely to fail. The Newton-Raphson-update restricted to the active set is given by

β̂
(k+1)
A ← β̂

(k)
A − [∇2bβ(k) ]

−1
A

{
[∇bβ(k) ]A + λ1 sign(β̂(k)

A )
}
. (5.9)

The Newton-Raphson-step is accepted only if sign(β̂(k+1)
A ) = sign(β̂(k)

A ). Otherwise, a
subdomain of gradient continuity has been left. Following Goeman (2007), a Newton-
Raphson step should be attempted only if topt < tedge in a preceding gradient descent
step. Moreover, Newton-Raphson-steps are neither favourable in the very first iterations
nor when the active set has not yet changed since the last failed attempt.
If p � n, it is possible that the size of the active set exceeds by far the sample size. In
this case, the Newton-Raphson-steps given by the update (5.9) are inefficient. The matrix
inversion requires O(|A|3) operations, but it is immediately seen that a reduction to O(n3)
operations can be achieved by reparametrization. We set β̂(k)

A = X>A γ̂
(k), so that the

gradient has the form

∇bγ(k) = −XAX
>
A (y − µ) + λ1XA sign(X>A γ̂

(k)) + 2λ2XAΛAX
>
A γ̂

(k) = XA[∇bβ(k) ]A,

and for the Hessian, one obtains

∇2bγ(k) = XAX
>
AWAXAX

>
A + 2λ2XAΛAX

>
A = XA[∇2bβ(k) ]AX

>
A .

For the Newton-Raphson-steps, this has the following algorithmic implications.

• One checks if |A| � n, where ’�’ means that the ratio |A|/n exceeds a factor related
to the specific problem.

• If yes, one reparametrizes β̂(k)
A to γ̂(k) by solving the linear equation XAX

>
A γ̂

(k) =
XAβ̂

(k)
A . Otherwise, one proceeds according to the update (5.9).

• One applies Newton-Raphson to γ̂(k), using∇bγ(k) , ∇2bγ(k) given above to obtain γ̂(k+1).

• One backtransforms β̂(k+1)
A = X>A γ̂

(k+1).

• The Newton-Raphson step is accepted only if sign(β̂(k+1)
A ) = sign(β̂(k)

A ).

5.4 Comparison

Cyclical coordinate descent is conceptually simple and involves only vector operations,
also avoiding the direct storage of the matrix X>X. If organized properly, one inner loop
involves O(p(n + p)) operations. Although we do not give a proof of convergence, the
algorithm is well-founded since it can be embedded into the framework of Tseng (2001).
This is contrary to Goeman’s algorithm, for which no convergence analysis has been per-
formed yet. Several parts resort to heuristics, but it generally works well in practice and
has turned out to be faster than CCD, which can be rather slow for large p.
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5.5 Degrees of freedom

The ’degrees of freedom’ of some estimation procedure δ are an integral part of model
selection criteria such as GCV, Cp or the AIC. Therefore, it would be desirable to determine
the degrees of freedom of the structured elastic net as a function of the hyperparameters
λ1 and λ2. Given a sample S = {(xi, yi)}ni=1 such that µ = E[y|X] and var[y|X] = σ2I,
denote by µ̂ the fit when applying δ to S. In the framework of Stein’s unbiased risk
estimation (Stein (1981)), the degrees of freedom of µ̂ are given by

df(µ̂) =
n∑
i=1

cov(µ̂i, yi)/σ2. (5.10)

This definition can easily be evaluated if µ̂ = Ay for some matrix A independent of y, in
which case df(µ̂) = tr(A). The lasso fit is a nonlinear function of y, which considerably
complicates the evaluation of (5.10). A heuristic due to Tibshirani (1996), see also Fan
and Li (2001), represents the lasso fit for linear models as weighted ridge fit:

µ̂ ≈ [1 X]([1 X]>[1 X] + λ1Ω)−1[1 X]>y = Ay,

where Ω = diag(0, (β̂lasso
1 )2/|β̂lasso

1 |, . . . , (β̂lasso
p )2/|β̂lasso

p |), with the convention 0−1 = 0.
The degrees of freedom according to Eq. (5.10) are then computed as the trace of A. This
heuristic can be modified for the structured elastic net fit via

µ̂ = [1 X]([1 X]>[1 X] + λ1Ω + λ2Λ̃)−1[1 X]>y, Λ̃ =
(

0 0>

0 Λ

)
.

A similar formula can be applied for the adaptive structured elastic net by rescaling the
entries of Ω. For generalized linear models, we can make use of the iteratively weighted
least squares approximation (5.1):

µ̂ ≈ [W (β̂0, β̂)]1/2[1 X]([1 X]>W (β̂0, β̂)[1 X] + λ1Ω + λ2Λ̃)−1[1 X]>[W (β̂0, β̂)]1/2z.

5.6 Standard errors

The heuristic of the previous section also turns out to be useful to obtain approximate
standard errors for the estimated coefficients. For linear models, we have

(β̂0 β̂
>)> ≈ ([1 X]>[1 X] + λ1Ω + λ2Λ̃)−1︸ ︷︷ ︸

Γ

[1 X]>y,

concluding that one may use standard errors

se(β̂j) = σ̂
√

(Γ[1 X]>[1 X]Γ)jj , j = 0, . . . , p,

where σ̂ denotes an estimator of the standard deviation of the error terms. Likewise for
generalized linear models, we have the approximation

(β̂0 β̂
>)> ≈ ([1 X]>W (β̂0, β̂)[1 X] + λ1Ω + λ2Λ̃)−1︸ ︷︷ ︸

Υ(bβ0,bβ)

[1 X]>W (β̂0, β̂)z,

and consequently

se(β̂j) = φ̂

√
{Υ(β̂0, β̂)[1 X]>W (β̂0, β̂)[1 X]Υ(β̂0, β̂)}jj , j = 0, . . . , p.

Note that this approach is not adequate for those β̂j equal to zero, since it always yields
ŝe(β̂j) = 0. An alternative is the bootstrap, whose validity for computing standard errors
in lasso-type estimation procedures has, up to our knowledge, not yet been studied.
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5.7 Determining the hyperparameters

We propose to resort to the standard technique of cross-validation, though it is computa-
tionally expensive. For each value on a sufficiently fine grid of (λ1, λ2)-values, we compute
the cross-validated loss

CV(λ1, λ2) =
k∑
l=1

∑
i: (xi,yi)∈Sl

L(yi, f(xi; β̂
S−l

0 , β̂S−l))

by randomly dividing S into cross-validation folds S1, . . . , Sk of roughly equal size, defining
S−l = S \ Sl, l = 1, . . . , k, and denoting by β̂S−l

0 , β̂S−l the structured elastic net estimates
using the sample Sl. Alternatively, one may compute a model selection criterion such as
the GCV, Cp, AIC on the basis of the formula of degrees of freedom given in Section 5.5.

6 Data Analysis

6.1 One-dimensional signal regression

In one-dimensional signal regression, as described, e.g., in Frank and Friedman (1993),
one aims at the prediction of a response given a sampled signal x> = (x(t))Tt=1, where
the indices t = 1, . . . , T , refer to different ordered sampling points. For a sample S =
{({x1(t)}Tt=1, y1), . . . , ({xn(t)}Tt=1, yn)} of pairs consisting of sampled signals and responses,
we consider prediction models of the form

ŷi = ζ

(
β̂0 +

T∑
t=1

xi(t)β̂(t)

)
, i = 1, . . . , n.

6.1.1 Simulation study

Similarly to Tutz and Gertheiss (2009), we simulate signals x(t), t = 1, . . . , T, T = 100,
according to

{x(t)} ∼
5∑

k=1

bk sin(tπ(5− bk)/50−mk) + τ(t),

{bk} ∼ U(0; 5), {mk} ∼ U(0; 2π), {τ(t)} ∼ N(0, 0.25),

with U(a; b) denoting the uniform distribution on the interval (a; b). For the coefficient
function β∗(t), t = 1, . . . , T , we examine two cases. In the first case, referred to as ’bump
setting’, we use

β∗(t) =


−
{

(30− t)2 + 100
}
/200 t = 21, . . . , 39,{

(70− t)2 − 100
}
/200 t = 61, . . . , 80,

0 otherwise.

In the second case, referred to as ’block setting’,

β∗ = (0, . . . , 0︸ ︷︷ ︸
20 times

, 0.5, . . . , 0.5︸ ︷︷ ︸
10 times

, 1, . . . , 1︸ ︷︷ ︸
10 times

, 0.5, . . . , 0.5︸ ︷︷ ︸
10 times

, 0.25, . . . , 0.25︸ ︷︷ ︸
10 times

, 0, . . . , 0︸ ︷︷ ︸
40 times

)>.

The form of the signals and coefficient functions are displayed in Figure 6.
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Figure 6: The setting of the simulation study. A collection of five signals (left panel), the
coefficient functions for ’bump’- (middle panel) and ’block’ setting (right panel), respec-
tively.

For both settings, data are simulated according to

y =
T∑
t=1

x(t)β∗(t) + ε, ε ∼ N(0, 5),

For each out of 50 iterations, we simulate i = 1, . . . , 500 i.i.d. realizations and divide them
into three parts: a training set of size 200, a validation set of size 100 and a test set of size
200. Hyperparameters of the methods listed below are optimized by means of the validation
set. As performance measures, we compute the absolute distance L1(β̂,β) =

∥∥∥β̂ − β∥∥∥
1

of
true- and estimated coefficients and the mean squared prediction error on the test set. For
methods with built-in feature selection, we additionally evaluate the goodness of selection
in terms of sensitivity and specificity, defined by

sensitivity(β̂,β∗) =
|{t : β̂(t) 6= 0} ∩ {t : β∗(t) 6= 0}|

|{t : β∗(t) 6= 0}|
,

specificity(β̂,β∗) =
|{t : β̂(t) = 0} ∩ {t : β∗(t) = 0}|

|{t : β∗(t) = 0}|
.

For each of the two setups, the simulation is repeated 50 times. The following methods are
compared:

• ridge regression,

• generalized ridge regression with a first difference penalty,

• P-splines according to Eilers and Marx (1999),

• lasso,

• fused lasso,

• elastic net,

• structured elastic net with a first difference penalty,

• adaptive structured elastic net, where the weights {ω(t)} are chosen according to the
ridge estimator of the same iteration as ω(t) = 1/|β̂ridge(t)|.

Performance measures are averaged over 50 iterations and displayed in Table 1 (bump
setting) and Table 2 (block setting), respectively.
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Figure 7: Estimated coefficient functions for the bump setting. The pointwise median
curve over 50 iterations is represented by a solid line, pointwise 0.05- and 0.95-quantiles
are drawn in dashed lines.
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Figure 8: Estimated coefficient functions for the block setting. The pointwise median
curve over 50 iterations is represented by a solid line, pointwise 0.05- and 0.95-quantiles
are drawn in dashed lines.
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method L1(β̂,β∗) PE sensitivity specificity
ridge 0.249 5.35

(5.9× 10−4) (0.078)
g.ridge 0.238 5.32

(9.9× 10−4) (0.076)
P-spline 0.241 5.30

(16.0× 10−4) (0.077)
lasso 0.271 5.72 0.62 0.65

(23.9× 10−4) (0.079) (8.9× 10−3) (0.016)
fused lasso 0.235 5.30 0.96 0.51

(7.2× 10−4) (0.075) (5.5× 10−3) (0.010)
enet 0.246 5.46 0.93 0.69

(29.9× 10−4) (0.081) (0.013) (0.032)
s.enet 0.232 5.30 0.98 0.59

(7.6× 10−4) (0.078) (7.8× 10−3) (0.029)
ada.s.enet 0.232 5.25 0.91 0.82

(15.0× 10−4) (0.075) (21.0× 10−3) (0.020)

Table 1: Results for the bump setting, averaged over 50 simulations. We make use of the
following abbreviations: ’PE’ for ’mean squared prediction error’, ’g. ridge’ for ’generalized
ridge’, ’enet’ for ’elastic net’, ’s.enet’ for ’structured elastic net’ and ’ada.s.enet’ for ’adap-
tive structured elastic net’. Standard errors are given in parentheses. For each column,
the best performance is emphasized in boldface.

For the bump setting, Figure 7 shows that the at least the crude shape of the coefficient
function is estimated by all compared methods in a satisfactory way, except for the lasso.
Due to a favourable signal-to-noise ratio, even simplistic approaches such as ridge- or gen-
eralized ridge regression show competitive performance with respect to prediction of future
observations. In pure numbers, the estimation of β∗ is satisfactory as well. However, the
lack of sparsity results into ’noise fitting’ for those parts where β∗(t) is zero. For the two
settings examined here, the P-spline approach does not improve over generalized ridge
regression, because the two coefficient functions are not overly smooth. The elastic net
considerably improves over the lasso and visually also over ridge regression, but it lacks
smoothness. Its numerical inferiority to ridge regression results from double shrinkage as
discussed in Subsection 3.5. The performance of the structured elastic net is not fully satis-
factory. In particular, at the changepoints from zero- to nonzero parts, there is a tendency
to widen unnecessarily the support of the nonzero sections. This shortcoming is removed
by the adaptive structured elastic net, thereby confirming the theoretical result concerning
selection consistency. This quality seems to be supported by the eminent performance
with respect to sensitivity and specificity. The success of the adaptive strategy is also
founded on the good performance of the ridge estimator providing the component-specific
weights ω(t). The block setting is actually tailored to the fused lasso, whose output are
piecewise constant coefficient functions. Nevertheless, it is not optimal, as the shrinkage of
the `1-penalty acts on all coefficients, including those different from zero. As a result, the
fused lasso is outperformed by the adaptive structured elastic net with respect to predic-
tion, though the structure part is seen to be not fully appropriate in the block setting. As
opposed to the bump setting, fitting the block function seems to be much more difficult to
accomplish in general.
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method L1(β̂,β∗) PE sensitivity specificity
ridge 0.082 5.41

(3.4× 10−3) (0.080)
g.ridge 0.064 5.35

(1.9× 10−3) (0.078)
P-spline 0.065 5.34

(1.9× 10−3) (0.077)
lasso 0.207 6.12 0.73 0.62

(3.6× 10−3) (0.089) (7.5× 10−3) (0.014)
fused lasso 0.058 5.34 0.99 0.51

(1.9× 10−3) (0.076) (7× 10−4) (0.009)
enet 0.094 5.47 0.95 0.73

(5.0× 10−3) (0.072) (6.4× 10−3) (0.083)
s.enet 0.070 5.38 0.99 0.60

(5.0× 10−3) (0.080) (3.3× 10−3) (0.027)
ada.s.enet 0.061 5.32 0.97 0.83

(3.2× 10−3) (0.69) (8.0× 10−3) (0.018)

Table 2: Results for the block setting, averaged over 50 simulations. For annotation, see
Table 1.

6.1.2 Accelerometer data

The ’Sylvia Lawry Centre for Multiple Sclerosis Research e.V.’, Munich, kindly provided
us with two accelerometer records of two healthy female persons, aged between 20 and
30. They were equipped with a belt containing an accelerometer integrated into the belt
buckle before walking several minutes on a flat surface at a moderate speed. The output are
triaxial (vertical, horizontal, lateral) acceleration measurements at roughly 25,000 sampling
points per person. Following Daumer et al. (2007) human gait, if defined as temporal
evolution of three-dimensional accelerations of the center of mass of the body, is supposed
to be a quasi-periodic process. Every period defines one gait cycle / double step, which
starts with the heel strike and ends with the heel strike of the same foot. A single step ends
with the heel strike of the other foot. Therefore, a double step can be seen as natural unit.
As consequence, decomposition of the raw signal into pieces, each representing one double
step, is an integral part of data preprocessing, not described in further detail here. Overall,
we extract i = 1, . . . , n = 406 double steps, 242 from person B (y = 0) and 164 from person
A (y = 1), ending up with a sample {(xi, yi)}ni=1, where each xi = (xi(t)), t = 1, . . . , T =
102 stores the observed vertical acceleration within double step i, i = 1, . . . , n. For
simplicity, we neglect the dependence of consecutive double steps within the same person
and treat them as independent realizations. Horizontal- and lateral acceleration are not
considered, since they do not carry information relevant to our prediction problem. We
aim at the prediction of the person (A or B) given a double step pattern, and additionally
at the detection of parts of the signal apt for discriminating between the two persons. We
randomly divide the complete sample into a learning set of size 300 and a test set of size
106, and subsequently carry out logistic regression on the training set, using the structured
elastic net with a squared first difference penalty. Hyperparameters are determined by ten-
fold cross-validation, and the resulting logistic regression model is used to obtain predictions
for the test set. The fused lasso with the hinge loss of support vector machines is used as
competitor. A collection of results is assembled in Figures 9, 10 and Table 3, from which one
concludes that classification is an easy task, since (nearly) perfect misclassification rates
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on the test set are achieved. Concerning feature selection, the results of the structured
elastic net are comparable to those of the fused lasso.

Figure 9: Coefficient functions for structured elastic net-regularized logistic regression (left
panel) and the fused lasso support vector machine (right panel). Within each panel, the
upper panel displays the overlayed double step patterns of the complete sample (406 double
steps). Colours refer to persons, and visual differences between the two classes have been
drawn manually as black bars.

fused lasso
t1 t2 test error # support vectors # nonzero coefficients
2.5 0.5 0 124 46

structured elastic net
λ1 λ2 test error degrees of freedom # nonzero coefficients
1.5 5 1 7.85 61

Table 3: Results of step classification for the fused lasso support vector machine and
structured elastic net-regularized logistic regression. For the fused lasso, t1 denotes the
bound imposed on the 1-norm of β corresponding to λ1, and t2 denotes the bound on the
absolute differences

∑T
t=2 |β(t)−β(t−1)|. For estimating the degrees of freedom, we make

use of the heuristic suggested in Section 5.
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Figure 10: Left panel: the coefficient function of structured elastic net logistic regression
(black points) and pointwise ±2 standard error curves, once computed according to heuris-
tic proposed in Section 5 (dashed lines) and once using 100 bootstrap iterations with fixed
hyperparameters (dotted lines). Right panel: predicted probabilities for class 1, evaluated
on the test set, indicated by filled points. The bars quantify uncertainty: lower- and upper
end correspond to 0.1- and 0.9-quantile, respectively, computed from the bootstrap.

6.2 Surface fitting

Figure 11 depicts the surface to be fitted on a 20×20 grid. The surface can be represented
by a discrete function β∗(t, u), t, u = 1, . . . , 20. It consists of three non-overlapping
truncated Gaussians of different shape and one plateau function. We have

β∗(t, u) = B(t, u) +G1(t, u) +G2(t, u) +G3(t, u),

B(t, u) =
1
2
I(t ∈ {10, 11, 12}, u ∈ {3, 4}),

G1(t, u) = max
{

0, exp
(
−(t− 3 u− 8)

(
3 0
0 0.25

)(
t− 3
u− 8

))
− 0.2

}
,

G2(t, u) = max
{

0, exp
(
−(t− 7 u− 17)

(
0.75 0

0 0.75

)(
t− 7
u− 17

))
− 0.2

}
,

G3(t, u) = max
{

0, exp
(
−(t− 15 u− 14)

(
0.5 −0.25
−0.25 0.5

)(
t− 15
u− 14

))
− 0.2

}
(6.1)

Similarly to the simulation study in Subsection 6.1.1, we simulate a noisy version of the
surface according to

y(t, u) = β∗(t, u) + ε(t, u), {ε(t, u)} i.i.d.∼ N(0, 0.252), t, u = 1, . . . , 20.

For each of the 50 runs, we simulate two instances of y(t, u). The first one is used for training
and the second one for hyperparameter tuning. The mean squared error for estimating β∗

is computed and averaged over 50 runs. Results are summarized in Figure 12 and Table
4. We compare ridge, generalized ridge with a difference penalty according to the grid
structure, lasso, fused lasso with a total variation penalty along the grid, structured- and
adaptive structured elastic net with the same difference penalty as for generalized ridge.
The elastic net coincides - up to a constant scaling factor - with the lasso/soft thresholding
in the orthogonal design case and is hence not considered.
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Figure 11: Contours of the surface according to Eq. (6.1).
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Figure 12: Contours of the estimated surfaces for four selected methods, averaged pointwise
over 50 runs.
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method PE B G1 G2 G3 zero
ridge 1.20 0.31 0.28 0.20 0.34 0.07

(0.01)
g.ridge 1.17 0.18 0.20 0.14 0.21 0.44

(0.04)
lasso 1.31 0.37 0.32 0.22 0.39 0.01

(0.01)
fused lasso 0.67 0.14 0.12 0.08 0.15 0.18

(0.02)
s.enet 0.88 0.22 0.16 0.12 0.23 0.18

(0.02)
ada.s.enet 0.56 0.15 0.09 0.08 0.18 0.06

(0.02 )

Table 4: Results of the simulation, averaged over 50 iterations (standard errors in paran-
theses). The columns labeled B, G1, G2, G3 and ’zero’ contain the mean prediction error
for the corresponding region of the surface. The abbreviations equal those in Table 1. The
prediction error has been rescaled by 100.

6.3 Leukaemia cancer data

The dataset of Golub et al. (1999) constitutes one of the milestones in molecular classifi-
cation of cancer. It consists of gene expression intensities for 7129 genes of 38 leukaemia
patients, from which 27 are diagnosed acute lymphoblastic leukaemia (ALL), and the re-
maining patients are diagnosed acute myeloid leukaemia (AML). In addition, there is an
independent test set of 34 samples. A major challenge in cancer research is the detection of
pathways governing or influencing the rise and development of cancer. While this rationale
is used to motivate the elastic net, it lacks the explicit integration of information on path-
ways, as available, e.g., in the KEGG database (Kanehisa and Goto (2000)). The latter
represents metabolic pathways as graphs in which chemical reactions form the vertex set,
and the edges are labeled by proteins/genes taking part in or catalyzing these reactions.
Li and Li (2008) incorporate this information by employing what they term ’network-
constrained regularization and variable selection’, a special case of the structured elastic
net, where the matrix Λ is chosen as the normalized graph Laplacian (Chung (1997)), a
rescaled version of the combinatorial Laplacian introduced in Section 2.2. Our approach
for cancer class prediction making use of knowledge about KEGG pathways operates in a
similar manner. We are able to match 2761 out of 7129 genes in the KEGG database, i.e.
these 2761 genes occur in at least one KEGG pathway. Next, we construct an unweighted
association graph by connecting two genes if and only if they share at least one common
pathway. The resulting graph consists of eight connected components, from which the
largest has a vertex set of size 2688. Following Li and Li (2008), we compute the nor-
malized graph Laplacian, whose rank equals the number of vertices minus the number
of connected components. The normalized graph Laplacian constitutes the matrix Λ of
structured net-regularized logistic regression model involving all 7129 genes. Since we are
given only 38 observations, it follows from the augmented data representation that the
structured elastic net degenerates in our situation. Concerning the aim of our analysis, we
are primarily interested in the amount the structured elastic net differs from the elastic net
in terms of variable selection. We do not observe a notable difference concerning prediction
error on the test set, which is not surprising for three reasons. Firstly, prediction is not
a hard task for the dataset at hand, because even simple approaches such as the nearest
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enet λ2
+→

# selected 12 (26) 19 (41) 27 (56) 64 (156)
‖β̂‖1 4.49 (9.27) 4.64 (9.29) 4.65 (9.34) 4.66 (9.90)
s.enet
# selected 19 (44) 23 (73) 27 (91) 36 (135)
‖β̂‖1 0.016 (9.18) 0.004 (9.39) 0.003 (9.60) 0.003 (10.02)

Table 5: The table displays the number of selected pathway genes for the elastic net and
the structured elastic net and the 1-norm of the corresponding coefficient subvector for
selected values of λ2, increasing from left to right and λ1 kept fixed. The numbers in
parentheses refer to all genes, including the non-pathway genes.

shrunken centroid classifier (Tibshirani et al. (2003)) yield good results. Secondly, as it
becomes clear from Table 5, the genes not mapped to any pathway are the relevant ones.
Finally, we are sufficiently self-critical to admit that the 38 bits of information contained in
the response are probably not enough to judge accurately the influence of pathways. Con-
cerning selection of variables occurring in pathways, we observe striking differences when
comparing the elastic net and its structured counterpart. Table 5 shows that for large λ2,
the importance of pathway-based predictors tends to zero for the structured elastic net,
while it remains roughly constant for the elastic net. As shown in Figures 13 and 14, the
number of pathway genes increases for both methods when increasing λ2, and the increase
is stronger for the elastic net. To judge the importance of pathways, we additionally apply
subset selection based on gene set enrichment analysis (GSA, Efron and Tibshirani (2007)),
in which the members of the same pathways are treated as one group and the non-pathway
genes are treated as groups consisting of one member only. We include a group as a whole
in a ridge-regularized logistic regression model if it is given a high score in GSA. The latter
is applied repeatedly in ten-fold cross-validation on the training set to select the optimal
number of groups. The results of this procedure confirm the observations made for the
structured elastic net, because we end up with a competitive prediction model that only
includes non-pathway genes.
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Figure 13: Selected pathway genes of the elastic net in the situation of Table 5, with
λ2 increasing from top to bottom and left to right. The numerals refer to frequently
occurring pathways: 1 - ’hematopoietic cell lineage’, 2 - ’epithelial cell signaling’, 3 -
’cytokine-cytokine receptor interaction’, 4 - ’ECM receptor interaction’, 5 - ’cell cycle’, 6
- ’bladder cancer’, 7 - ’arachidonic acid metabolism’, 8 - ’Tryptophan metabolism’, 9 -
’calcium signaling pathway’, 10 - ’focal adhesion’.
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Figure 14: Selected pathway genes of the structured elastic net in the situation of Table 5,
with λ2 increasing from top to bottom and left to right. The numerals refer to frequently
occurring pathways: 1 - ’hematopoietic cell lineage’, 2 - ’epithelial cell signaling’, 3 -
’cytokine-cytokine receptor interaction’, 4 - ’ECM receptor interaction’, 5 - ’cell cycle’, 6
- ’bladder cancer’, 7 - ’arachidonic acid metabolism’, 8 - ’Tryptophan metabolism’, 9 -
’calcium signaling pathway’, 10 - ’focal adhesion’.
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7 Discussion

The structured elastic net is proposed as a procedure for coefficient selection and -smoothing.
We have established a general notion of structured features, for which the structured elastic
net is able to take advantage of prior knowledge as opposed to the lasso and the elastic
net, which are both purely data-driven. The structured elastic net may also be regarded
as a computationally more convenient alternative to the fused lasso. Conceptually, gener-
alizing the fused lasso by computing the total variation of the coefficients along a graph
is straightforward. However, due to the non-differentiability of the structure part of the
fused lasso, computation may be intractable even for moderately sized graphs.
Turning to the drawbacks of the structured elastic net, we have outlined in Section 5 that
model selection and computation of standard errors and in turn the quantification of uncer-
tainty is notoriously difficult. A Bayesian approach promises to be superior in this regard.
The lasso can be treated within a Bayesian inference framework (Park and Casella (2008)),
while the quadratic part of the structured elastic net regularizer is already motivated from
a Bayesian perspective in this paper.
With regard to to possible directions of future research, we consider to study the structured
elastic net in combination with other loss functions, e.g. the hinge loss of support vector
machines or the check loss for quantile regression. Concerning the application to genomic
data, we work on an extension to survival data, in particular to the Cox proportional haz-
ards model. The asymptotic analysis in this paper is basic in the sense that it is bound to
strong assumptions, and the role of the structure part of the regularizer and its interplay
with the true coefficient vector is not well understood yet, leaving some room for more
profound investigations.
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A Proofs

A.1 Proof of Proposition 1

Using the well-known expression for the gradient ∂L
∂β in generalized linear models, the

Karush-Kuhn-Tucker (KKT) conditions imply that

−X>1 (y − µ̂) + λ2(β̂1 + sβ̂2) + λ1 sign(β̂1) = 0,
−X>2 (y − µ̂) + λ2(β̂2 + sβ̂1) + λ1 sign(β̂2) = 0,

where µ̂ = Ê[y|X1,X2]. Adding the second equation to the first equation multiplied by s
yields

−(sX1 +X2)>(y − µ̂) + 2λ2(β̂2 + sβ̂1) = 0,
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implying

|β̂1 + sβ̂2| =
1

2λ2
|(sX1 +X2)>(y − µ̂)|

≤ 1
2λ2
‖sX1 +X2‖ ‖y − µ̂‖

≤ 1
2λ2

√
2(1 + sρ) ‖y‖ ,

noting that ‖sX1 +X2‖ = (‖X1‖2 + ‖X2‖2 + 2s 〈X1,X2〉)1/2 = (2(1 + sρ))1/2, since X1

and X2 are standardized.

A.2 Proof of Proposition 2

Consider the case s = −1 and define another set of coefficients by

β̃0 = β̂0, β̃1 = β̃2 =
1
2

(β̂1 + β̂2).

First observe that
n∑
i=1

L(yi, f(xi; β̃0, β̃)) +
λ2

2
(β̃1 − β̃2)2 + λ1

∥∥∥β̃∥∥∥
1

−
n∑
i=1

L(yi, f(xi; β̂0, β̂))− λ2

2
(β̂1 − β̂2)2 − λ1

∥∥∥β̂∥∥∥
1
≥ 0.

(A.1)

For the part involving the loss function, we obtain

n∑
i=1

{
L(yi, f(xi; β̃0, β̃))− L(yi, f(xi; β̂0, β̂))

}
≤

n∑
i=1

∣∣∣L(yi, f(xi; β̃0, β̃))− L(yi, f(xi; β̂0, β̂))
∣∣∣

≤ C
n∑
i=1

|x>i (β̃ − β̂)|

= C
n∑
i=1

∣∣∣∣12(xi1 − xi2)(β̂2 − β̂1)
∣∣∣∣

=
C

2
|β̂2 − β̂1| ‖X1 −X2‖1 . (A.2)

For the `1-regularizer, we have∥∥∥β̃∥∥∥
1
−
∥∥∥β̂∥∥∥

1
= |β̂1 + β̂2| − |β̂1|+ |β̂2| ≤ 0. (A.3)

For the quadratic regularizer one obtains the difference 1
2(β̂1 − β̂2)2. Combining this with

(A.1) - (A.3), we obtain

C

2
|β̂1 − β̂2| ‖X1 −X2‖1 −

λ2

2
(β̂1 − β̂2)2 ≥ 0,

33



from which it follows that

|β̂1 − β̂2| ≤
C

λ2
‖X1 −X2‖1

≤ C

λ2

√
n ‖X1 −X2‖

≤ C

λ2

√
n2(1− ρ),

as shown in Proposition 1. The case s = 1 is obtained analogously by setting β̃0 = β̂0,
β̃1 = 1

2(β̂1 − β̂2), β̃2 = 1
2(β̂2 − β̂1).

A.3 Auxiliary results

The asymptotic analysis relies on a more general theory of constrained M-estimation in-
volving the notion of pointwise convergence in distribution of convex functions.

Definition A. 1. Let Gn be a sequence of lower semicontinuous convex random functions
from Rp to R ∪ {∞}, let G be another such function and let D be a countable dense set in
Rp. Then Gn converges pointwise in distribution to G, in signs Gn

D→ G, if for each finite
subset {u1, . . . ,uk} ⊂ D, (Gn(u1), . . . , Gn(uk))>

D→ (G(u1), . . . , G(uk))>.

Theorem A. 1. (Geyer (1996))
Let Gn, G be as in Definition A. 1 and let Gn

D→ G. Define ûn = argminGn and û =
argminG. If G has a unique minimizer , then ûn

D→ û.

By means of this preparation, we can prove Theorems 1-4.

A.4 Proof of Theorem 1

Define the random function Vn(u) by

Vn(u) =
n∑
i=1

(εi − u>xi/
√
n)2 − ε2i

+ λn1

p∑
j=1

|β∗j + uj/
√
n| − |β∗j |

+ λn2 [(β∗ + u/
√
n)>Λ(β∗ + u/

√
n)− β∗>Λβ∗].

Observe that Vn(u) is minimized at ûn =
√
n(β̂n − β∗), because with u =

√
n(β − β∗),

ûn = argmin
u

Vn(u)⇔ β̂n = argmin
β

(Qn(β)−Qn(β∗)),

with

Qn(β) = ‖yn −Xnβ‖2 + λn1 ‖β‖1 + λn2β
>Λβ. (A.4)

Considering the first term of Vn(u), we have
n∑
i=1

(εi − u>xi/
√
n)2 − ε2i =

u>X>nXnu

n
− 2u>

√
n
X>n (yn −Xnβ

∗)
n

=
u>X>nXnu

n
− 2u>

X>nXn

n

√
n

((
X>nXn

n

)−1
X>n yn
n

− β∗
)
.
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The first term on the r.h.s. converges to u>Cu by condition (C.2). The asymptotic result
for the ols estimator is

√
n

((
X>nXn

n

)−1
X>n yn
n

− β∗
)

D→ N(0, σ2C−1),

hence the second term of the previous expression converges to w in distribution. Invoking
Slutsky’s theorem, the first term of Vn converges to −2u>w+u>Cu, again in distribution.
For the first penalty term in Vn, one has that

λn1

p∑
j=1

|β∗j + uj/
√
n| − |β∗j | =

λn1√
n

p∑
j=1

{sign(β∗j + uj/
√
n)(
√
nβ∗j + uj)− sign(β∗j )

√
nβ∗j }I(β∗j 6= 0)

+
λn1√
n

p∑
j=1

|uj |I(β∗j = 0).

Since sign(β∗j + u/
√
n) → sign(β∗j ) and λn1/

√
n → λ0

1 as n → ∞, the expression
converges to the second line in the definition of V . Finally,

lim
n→∞

λn2{(β∗ + u/
√
n)>Λ(β∗ + u/

√
n)− β∗>Λβ∗} = 2λ0

2u
>Λβ∗.

Applying Slutsky’s theorem once again, it holds that Vn
D→ V in the sense of Definition A.

1. Since Vn is convex and V has a unique minimizer, we conclude from Theorem A. 1 that

argmin
u

Vn(u) = ûn
D→ argminV (u) =

√
n(β̂n − β∗).

A.5 Proof of Theorem 2

Define Wn(u) by

Wn(u) = Ln(u) + λn1

p∑
j=1

|β∗j + uj/
√
n| − |β∗j |+ λn2 [(β∗ + u/

√
n)>Λ(β∗ + u/

√
n)− β∗>Λβ∗],

Ln(u) = 2φ−1
n∑
i=1

b(x>i (u/
√
n+ β∗))− b(x>i β∗)− yix>i u/

√
n.

Observe that argminW (u) = ûn =
√
n(β̂n − β∗) with β̂n as in Theorem 2. We have the

following second-order Taylor expansion of Ln(u) around u = 0:

Ln(u) = 2φ−1
n∑
i=1

(yi − b′(x>i β∗))
u>xi√
n

+ φ−1
n∑
i=1

b′′(x>i β
∗)
u>xix

>
i u

n

+Rn(u),

where the remainder is given by

Rn(u) =
1

3n3/2
φ−1

n∑
i=1

b′′′(x>i ξ)(x>i u)3,
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where ξ is contained in the segment from β∗ to β∗ + u/
√
n. Considering the first term

of Ln(u), standard properties of generalized linear models can be applied (McCullagh and
Nelder (1989)):

φ−1u> E[xi(yi − b′(x>i β∗))] = 0,

var[φ−1(yi − b′(x>i β∗))] = u>
E[φ−1b′′(x>i β

∗)xix>i ]
n

u =
u>Iu
n

.

Application of the central limit theorem yields that

φ−1 u
>
√
n

n∑
i=1

xi(b′(x>i β
∗)− yi)

D→ u>w, w ∼ N(0, I).

For the second term of Ln(u), note that

φ−1
n∑
i=1

b′′(x>i β
∗)
u>xix

>
i u

n
→ I.

Turning to the remainder,

3n1/2φRn(u) =
1
n

n∑
i=1

b′′′(x>i ξ) ≤ 1
n

n∑
i=1

M(xi)(x>i u)3 → E[M(X)|u>X|3] <∞

by condition (G.2), concluding that Rn(u) = OP(n−1/2). The limiting behaviour of the
regularizer in Wn(u) has already been studied in the proof of Theorem 1. As for the latter,
Slutsky’s theorem and Theorem A. 1 imply that argminWn(u) D→ argminW (u).

A.6 Proof of Theorem 3

Define

Ψn(u) =
n∑
i=1

(
εi −

λn1
n
x>i u

)2

− ε2i

+ λn1

p∑
j=1

∣∣∣∣β∗j +
λn1
n

∣∣∣∣− |β∗j |
+ λn2

{(
β∗ +

λn1
n
u

)>
Λ
(
β∗ +

λn1
n
u

)
− β∗ >Λβ∗

}
,

and Ξn(u) = Ψn(u) · (λn1 )2/n. If β̂n denotes the minimizer of Qn(β) in Eq. (A.4), then
ûn = argmin Ψn(u) = argmin Ξn(u) = n/λn1 (β̂n − β∗). Next, we consider the termwise
limits within Ξn(u). We have

Ξn(u) =
1
n
u>X>nXnu− 2

ε>nXn

λn1

+
p∑
j=1

n

λn1

(∣∣∣∣β∗j +
λn1
n

∣∣∣∣− |β∗j |)

+
nλn2

(λn1 )2

{(
β∗ +

λn1
n
u

)>
Λ
(
β∗ +

λn1
n
u

)
− β∗ >Λβ∗

}
.
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The first term converges to u>Cu. For the second term, we have

ε>nXn

λn1
=
√
n

(
ε>nXn

n

)
︸ ︷︷ ︸

=OP(1)

√
n

λn1
= oP(1).

The third terms converges to

P (u) =
p∑
j=1

sign(β∗j )I(β∗j 6= 0) + |uj |I(β∗j = 0).

For the last term, we have the limit 2Ru>Λβ∗. Defining Ξ(u) = u>Cu+P (u)+2Ru>Λβ∗,
Ξn

D→ Ξ and by Theorem A. 1, ûn
P→ argmin Ξ = û.

Since we have claimed selection consistency,

P(β̂j,n = 0)→ 1 for all j ∈ Ac,

from which it follows that ûj = 0 ∀j ∈ Ac. On the other hand, using the partitioning
scheme of Eq. (4.3), ûA satisfies the equation

2CAûA + 2CAAcuAc + sA + 2RΛAβ
∗
A = 0, sA = (sign(β∗j ), j ∈ A)>.

⇒ ûA = −C−1
A

(
CAAcuAc +

sA
2

+RΛAβ
∗
A

)
.

Partial optimization of Ξ w.r.t. to uAc amounts to the minimization of the following
expression:

u>AcCAcuAc + 2u>AcCAcAûA + ‖uAc‖1 + 2Ru>AcΛAcAβ
∗
A.

Knowing that ûAc = 0 and plugging in the expression for ûA, the KKT conditions imply
that ∣∣−CAcAC

−1
A (sA + 2RΛAβ

∗
A) + 2RΛAcAβ

∗
A

∣∣ ≤ 1.

A.7 Proof of Theorem 4

Define

Zn(u) =
n∑
i=1

(εi − u>xi/
√
n)2 − ε2i

+ λn1

p∑
j=1

ωj(|β∗j + uj/
√
n| − |β∗j |)

+ λn2 [(β∗ + u/
√
n)>Λ(β∗ + u/

√
n)− β∗>Λβ∗],

which is minimized at
√
n(β̂adaptive

n − β∗). From the proof of Theorem 1, we know that
the first line in Zn converges in distribution to −2u>w+u>Cu, w ∼ N(0, σ2C). For the
second line, one has to distinguish two cases.
Case 1: β∗j 6= 0. Then (|β∗j + uj/

√
n| − |β∗j |) → uj sign(β∗j ). Moreover, from the defini-

tion of ωj , the assumptions made for β̂init
j and the continuous mapping theorem, we have

ωj
P→ |β∗j |−γ . Since λn1/

√
n→ 0 by assumption, the whole term vanishes.

Case 2: β∗j = 0. Then
√
n(|β∗j+uj/

√
n|−|β∗j |)→ |uj |, n−1/2λn1ωj = n−1/2λn1r

γ
n|rnβ̂j

init
|−γ →
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∞, noting that |rnβ̂init
j | = OP(1) by assumption. Overall, if uj 6= 0, the whole term tends

to infinity as n → ∞. For the third line in Zn(u), one obtains the limit 2λ0
2u
>Λβ∗.

Putting all together, we have for all u that

Zn(u) D→ Z(u) =

{
−2u>AwA + u>ACAuA + 2λ0

2u
>
AΛAβ

∗
A if uAc = 0,

∞, otherwise,

and that argminZn
D→ argminZ = û by Theorem A. 1. We have ûAc = 0, and, by

differentiation
ûA = C−1

A (wA − λ0
2ΛAβ

∗
A), wA ∼ N(0, σ2CA),

i.e. √
n(β̂adaptive

A,n − β∗A) D→ N(−λ0
2C
−1
A ΛAβ

∗
A,C

−1
A ),

and consequently
lim

n→∞
P(∃j ∈ A : β̂adaptive

j,n = 0) = 0.

On the other hand, take j ∈ Ac and assume that limn→∞ β̂
adaptive
j,n 6= 0. Then one can

differentiate the adaptive structured elastic net criterion w.r.t. βj , yielding the equation

2X>j,n(yn −Xnβ̂
adaptive
n )− 2λn2 ljj β̂

adaptive
j,n − 2λn2

∑
r
r 6=j

ljrβ̂
adaptive
r,n = λn1 sign(β̂adaptive

j,n )ωj .

Dividing both sides of the previous equation by
√
n, the left hand side is OP(1), while

the expression on the right hand side tends to infinity. Hence, the probability that the
equation is fulfilled tends to zero, which contradicts the assumption that β̂adaptive

j,n 6= 0.

B Analytical solution for two predictors

First, assume that β̂1, β̂2 6= 0. From the KKT conditions, we have

β̂1 =

eβ1︷ ︸︸ ︷
X>1 (y −X2β̂2) + λ2l12β̂2−λ1

2 sign(β̃1)
1 + λ2l11

,

β̂2 =

eβ2︷ ︸︸ ︷
X>2 (y −X1β̂1) + λ2l12β̂1−λ1

2 sign(β̃2)
1 + λ2l22

,

i.e.

β̂1 = (1 + λ2l11)−1 sign(β̃1)(|β̃1| − λ1/2)

= (1 + λ2l11)−1 sign(β̃1)

(
β̃1| − |β̃2|

2
− γ

)
, γ =

|β̃1|+ |β̃2| − λ1

2
> 0.

Likewise, we obtain

β̃2 = (1 + λ2l22)−1 sign(β̃2)

(
β̃2| − |β̃1|

2
− γ

)
.
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Otherwise, assume that β̃1 − λ1/2 > 0 and that[
|β̃2| − |β̃1|

2
+ γ

]
+

= 0,

where [z]+ = max(z, 0). Then, it follows that β̂2 = 0. The case β̂1 = 0 is derived
analogously. Overall, this gives the following recipe for determining β̂1, β̂2: one starts with[

β̃1

β̃2

]
=
[

1 + λ2l11 X>1 X2 + λ2l12

X>1 X2 + λ2l12 1 + λ2l22

]−1 [
X>1 y
X>2 y

] [
1 + λ2l11 0

0 1 + λ2l22

]
,

computes γ, and determines

β̂1 =

[
|β̃1| − |β̃2|

2
+ γ

]
+

(1 + λ2l11)−1,

β̂2 =

[
|β̃2| − |β̃1|

2
+ γ

]
+

(1 + λ2l22)−1.
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