16,930 research outputs found

    Event-triggered Consensus Control of Heterogeneous Multi-agent Systems: Model- and Data-based Analysis

    Full text link
    This article deals with model- and data-based consensus control of heterogenous leader-following multi-agent systems (MASs) under an event-triggering transmission scheme. A dynamic periodic transmission protocol is developed to significantly alleviate the transmission frequency and computational burden, where the followers can interact locally with each other approaching the dynamics of the leader. Capitalizing on a discrete-time looped-functional, a model-based consensus condition for the closed-loop MASs is derived in form of linear matrix inequalities (LMIs), as well as a design method for obtaining the distributed controllers and event-triggering parameters. Upon collecting noise-corrupted state-input measurements during open-loop operation, a data-driven leader-following MAS representation is presented, and employed to solve the data-driven consensus control problem without requiring any knowledge of the agents' models. This result is then extended to the case of guaranteeing an H\mathcal{H}_{\infty} performance. A simulation example is finally given to corroborate the efficacy of the proposed distributed event-triggering scheme in cutting off data transmissions and the data-driven design method.Comment: 13 pages, 6 figures. This draft was firstly submitted to IEEE Open Journal of Control Systems on April 30, 2022, but rejected on June 19, 2022. Later, on July 23, 2022, this paper was submitted to the journal SCIENCE CHINA information scienc

    Distributed Event-triggered Fault-tolerant Consensus Control of Multi-agent Systems under DoS Attacks

    Get PDF
    This study investigates the distributed fault-tolerant consensus issue of multi-agent systems subject to complicated abrupt and incipient time-varying actuator faults in physical hierarchy and aperiodic denial-of-service (DoS) attacks in networked hierarchy. Decentralized estimators are devised to estimate consecutive system states and actuator faults. A unified framework with an absolute local output-based closed-loop estimator in decentralized fault estimation design and a relative broadcasting state-based open-loop estimator in distributed event-triggered fault-tolerant consensus design is developed. Criteria of exponential consensus of the faulty multi-agent systems under DoS attacks are derived by virtue of average dwelling time and attack frequency technique. Simulations are outlined to confirm the efficacy of the proposed distributed fault-tolerant consensus control algorithm based on an event-triggered mechanism

    Distributed Adaptive Control for a Class of Heterogeneous Nonlinear Multi-Agent Systems with Nonidentical Dimensions

    Get PDF
    A novel feedback distributed adaptive control strategy based on radial basis neural network (RBFNN) is proposed for the consensus control of a class of leaderless heterogeneous nonlinear multi-agent systems with the same and different dimensions. The distributed control, which consists of a sequence of comparable matrices or vectors, can make that all the states of each agent to attain consensus dynamic behaviors are defined with similar parameters of each agent with nonidentical dimensions. The coupling weight adaptation laws and the feedback management of neural network weights ensure that all signals in the closed-loop system are uniformly ultimately bounded. Finally, two simulation examples are carried out to validate the effectiveness of the suggested control design strategy

    A Comprehensive Review of the State-of-the-Art of Secondary Control Strategies for Microgrids

    Get PDF
    The proliferation of distributed energy resources in distribution systems has given rise to a new concept known as Microgrids (MGs). The effective control of MGs is a crucial aspect that needs to be prioritized before undertaking any implementation procedure. This article provides a comprehensive overview of hierarchical control methods that ensure efficient and robust control for MGs. Specifically, it focuses on the secondary controller approaches (centralized, distributed, and decentralized control) and examines their primary strengths and weaknesses. The techniques are thoroughly discussed, deliberated, and compared to facilitate a better understanding. According to functionality, the hierarchical-based control scheme is allocated into three levels: primary, secondary, and tertiary. For secondary control level, the MG communication structures permit the usage of various control methods that provided the significance of the secondary controller for consistent and reliable MG performance and the deficiency of an inclusive recommendation for scholars. Also, it gives a review of the literature on present important matters related to MG secondary control approaches in relation to the challenges of communication systems. The problem of the secondary level control is deliberated with an emphasis on challenges like delays. Further, at the secondary layer, the distributed control techniques for reducing communication system utilization and then reducing communication system delays are conferred. Furthermore, the benefits and limitations of various control structures, such as centralized, decentralized, and distributed are also discusses in this study. Later a comparative analysis of entire control approaches, the best methods of control according to the author's perspective are also discussed

    Intelligent Design for Real Time Networked Multi-Agent Systems

    Get PDF
    Past decade has witnessed an unprecedented growth in reasearch for Unmanned Aerial Vehicles (UAVs) both in military and nonmilitary fronts. They have become ubiquitous in almost every military operations which includes domestic and overseas missions. With rapidly advancing technology, open source nature of the flight controllers, and significantly lesser costs than before, companies around the world are delving into UAV market as one of the upcoming lucrative investments. Companies like Amazon Inc., Dominos Pizza Inc. have had some successful test runs which again solidifies the research opportunities. Delivery services and recreational uses seems to have increased in the past 3-4 years which has let the Federal Aviation Administration to update their rules and regulations. Mapping, Surveying and search/rescue mission are some of the applications of UAVs that are most appealing. Making these applications airborne cuts the time and cost at considerable and affordable levels. Using UAVs for operations has advantages in both response time and need of manpower compared to piloted aricrafts. Obtaining prior information of a person/people in distress can become a deciding factor for a successful mission. It can help in making critical decision as which location or type of helicopter / vehicle to be used for extraction, equipment to bring and how many crew members that are needed. The idea here is to make this system of UAVs automated to coordinate with each other without human intervention (other than high level commands like takeoff and land). Researchers and Military experts have recognized the use of drones for search and rescue missions to be of utmost importance. Year 2016 saw a first of its kind UAV search and rescue symposium held in Nevada. The objective was to give a platform for UAV enthusiasts and researchers and share their experiences and concerns while using UAVs as first responders. The biggest drawback of using an aerial vehicle for inspection/search/rescue mission is its airborne time. The batteries used are big and heavy which increases the weight and decreases the flight time. One can go about solving this issue by using a swarm of UAVs which would inspect/search a given area in less amount of time. This has advantage in both response time and need for lesser man power.The main challenges for Multiple Drone Control (MDC) includes 1) Address the periodic sampling frequency issue of information of assets so as to maintain stability; 2) Optimize the communication channel while providing minimum Quality of Service (QoS); 3) Optimal control strategy which includes non-linearity in state space model; 4) Optimal control in presence of uncertainties; 5) Admitting new agents for dynamic agents in the Networked Multi-Agent System (MAS) Scenario.This dissertation aims at building a hardware and a software platform for communication of multiple UAVs upon which additional control algorithms can be implementated. It starts with building a DJI S1000 octacopter from the ground up. The components used are specified in the following sections. The idea here is to make a drone that can autonomously travel to specified location with safety features like geofencing and land on emergency situations. The user has to provide the necessary commands like GPS locations and takeoff/land commands via a Radio Controller (RC) remote. At any point of the flight, the UAV should be able to receive new commands from the ground control stations (GCS). After successful implementation, the UAV would not be restricted to the range of RC remote. It would be able to travel greater distances given the GPS signal remains operational in the field. This is possible at a global scale with limitation of only the batteries and flight time
    corecore