9,534 research outputs found

    Outer bounds on the storage-repair bandwidth trade-off of exact-repair regenerating codes

    Get PDF
    In this paper, three outer bounds on the normalised storage-repair bandwidth trade-off of regenerating codes having parameter set {(n, k, d),(alpha, beta)} under the exact-repair (ER) setting are presented. The first outer bound, termed as the repair-matrix bound, is applicable for every parameter set (n, k, d), and in conjunction with a code construction known as improved layered codes, it characterises the normalised ER trade-off for the case (n, k = 3, d = n - 1). The bound shows that a non-vanishing gap exists between the ER and functional-repair (FR) trade-offs for every (n, k, d). The second bound, termed as the improved Mohajer-Tandon bound, is an improvement upon an existing bound due to Mohajer et al. and performs better in a region away from the minimum-storage-regenerating (MSR) point. However, in the vicinity of the MSR point, the repair-matrix bound outperforms the improved Mohajer-Tandon bound. The third bound is applicable to linear codes for the case k = d. In conjunction with the class of layered codes, the third outer bound characterises the normalised ER trade-off in the case of linear codes when k = d = n - 1

    ์„ ํ˜• ๋™์ผ ๋ณต๊ตฌ ์žฌ์ƒ ๋ถ€ํ˜ธ์˜ ์ €์žฅ๋Ÿ‰๊ณผ ํ†ต์‹ ๋Ÿ‰ ๊ฐ„ ์ƒ์ถฉ ๊ด€๊ณ„์˜ ์™ธ๋ถ€ ๊ฒฝ๊ณ„์— ๊ด€ํ•œ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2017. 8. ์ด์ •์šฐ.์ตœ๊ทผ SNS๋‚˜ ํด๋ผ์šฐ๋“œ ์„œ๋น„์Šค์˜ ์‚ฌ์šฉ๋Ÿ‰ ์ฆ๊ฐ€์™€ ๋”๋ถˆ์–ด, ๋Œ€๊ทœ๋ชจ์˜ ๋ฐ์ดํ„ฐ๋ฅผ ๋„คํŠธ์›Œํฌ์ƒ์— ํšจ์œจ์ ์ด๊ณ  ์•ˆ์ •์ ์œผ๋กœ ์ €์žฅํ•  ์ˆ˜ ์žˆ๋Š” ๋ถ„์‚ฐ ์ €์žฅ ์‹œ์Šคํ…œ(distributed storage system)์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๊ฐ€ ํ™œ๋ฐœํ•˜๊ฒŒ ์ง„ํ–‰๋˜๊ณ  ์žˆ๋‹ค. ๋ถ„์‚ฐ ์ €์žฅ ์‹œ์Šคํ…œ์€ ๋Œ€๊ทœ๋ชจ์˜ ๋ฐ์ดํ„ฐ ํŒŒ์ผ์„ ๋„คํŠธ์›Œํฌ๋กœ ์—ฐ๊ฒฐ๋œ ๋‹ค์ˆ˜์˜ ๋…ธ๋“œ์— ๋ถ„์‚ฐ์ ์œผ๋กœ ์ €์žฅํ•˜๋Š” ์‹œ์Šคํ…œ์„ ๋งํ•œ๋‹ค. ์ผ๋ถ€์˜ ๋…ธ๋“œ๊ฐ€ ์†์‹ค๋˜์—ˆ์„ ๋•Œ, ์†์‹ค๋œ ๋…ธ๋“œ๋Š” ๋‹ค๋ฅธ ์ƒ์กดํ•œ ๋…ธ๋“œ๋“ค๋กœ๋ถ€ํ„ฐ ์ „์†ก๋ฐ›์€ ์ •๋ณด๋ฅผ ์ด์šฉํ•˜์—ฌ ๋ณต๊ตฌ๋  ์ˆ˜ ์žˆ์–ด์•ผ ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๋ณต๊ตฌ ๊ณผ์ •์—์„œ ํ•„์š”ํ•œ ์ด ์ •๋ณด๋Ÿ‰์ธ ๋ณต๊ตฌ ๋Œ€์—ญํญ(repair bandwidth)์„ ์ตœ์†Œํ™”ํ•˜๋Š” ๊ฒƒ์€ ๋ถ„์‚ฐ ์ €์žฅ์‹œ์Šคํ…œ์˜ ์ค‘์š”ํ•œ ์„ฑ๋Šฅ ์ง€ํ‘œ์ค‘ ํ•˜๋‚˜์ด๋‹ค. ํ˜‘๋ ฅ ์žฌ์ƒ ๋ถ€ํ˜ธ(Cooperative regenerating codes)๋Š” ๋†’์€ ๋ณต๊ตฌ ๋Œ€์—ญํญ์„ ์ตœ์†Œํ™”ํ•˜๋Š” erasure code์˜ ์ผ์ข…์ด๋‹ค. (n,k,d,r)(n,k,d,r)-ํ˜‘๋ ฅ ์žฌ์ƒ ๋ถ€ํ˜ธ๋Š” ์ด nn๊ฐœ์˜ ์ €์žฅ์†Œ ๋…ธ๋“œ ์ค‘ ์ผ๋ถ€์˜ kk๊ฐœ์˜ ๋…ธ๋“œ์— ์ €์žฅ๋œ ์ •๋ณด๋งŒ์œผ๋กœ ์›๋ž˜์˜ ํŒŒ์ผ์„ ๋ณต๊ตฌํ•  ์ˆ˜ ์žˆ๋Š” ๊ธฐ๋Šฅ๊ณผ rr๊ฐœ์˜ ๋…ธ๋“œ ์†์‹ค์ด ๋ฐœ์ƒํ–ˆ์„๋•Œ, ์ž„์˜์˜ dd๊ฐœ์˜ ์ƒ์กดํ•œ ๋…ธ๋“œ๋“ค๋กœ๋ถ€ํ„ฐ ์ •๋ณด๋ฅผ ์ „์†ก๋ฐ›์•„ ๋ณต๊ตฌ๋  ์ˆ˜ ์žˆ๋Š” ๊ธฐ๋Šฅ์„ ๊ฐ€์ง„๋‹ค. ์ด ๋•Œ, ์žฌ์ƒ ๋ถ€ํ˜ธ์˜ ๊ฐ ๋…ธ๋“œ๋ณ„ ์ €์žฅ๋Ÿ‰ ฮฑ\alpha์™€ ๋ณต๊ตฌ ๋Œ€์—ญํญ ฮณ\gamma๋Š” ์ผ๋ฐ˜์ ์œผ๋กœ ์ƒ์ถฉ๊ด€๊ณ„์— ๋†“์—ฌ ์žˆ์Œ์ด ์•Œ๋ ค์ ธ ์žˆ๋‹ค. ํ•˜์ง€๋งŒ ์ƒˆ๋กญ๊ฒŒ ๋ณต๊ตฌ๋œ ๋…ธ๋“œ๊ฐ€ ๊ธฐ์กด ๋…ธ๋“œ์™€ ๋‹ค๋ฅธ ์ •๋ณด๋ฅผ ๊ฐ€์ง€๋Š” ๊ฒƒ์„ ํ—ˆ์šฉํ•˜๋Š” ๊ธฐ๋Šฅ ๋ณต๊ตฌ(functional repair) ๋ชจ๋ธ์˜ ๊ฒฝ์šฐ, ์ด ์ƒ์ถฉ๊ด€๊ณ„๊ฐ€ ์™„๋ฒฝํžˆ ๋ฐํ˜€์ ธ ์žˆ์œผ๋‚˜, ์†์‹ค๋˜๊ธฐ ์ „๊ณผ ์™„์ „ํžˆ ๋™์ผํ•œ ๋…ธ๋“œ๋กœ์˜ ๋ณต๊ตฌ๋ฅผ ์š”๊ตฌํ•˜๋Š” ๋™์ผ ๋ณต๊ตฌ(exact repair) ๋ชจ๋ธ์˜ ๊ฒฝ์šฐ, ์ด ์ƒ์ถฉ๊ด€๊ณ„๊ฐ€ ๋ช…ํ™•ํžˆ ๋ฐํ˜€์ ธ ์žˆ์ง€ ์•Š๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋™์ผ ๋ณต๊ตฌ ๋ชจ๋ธ์˜ ์ƒ์ถฉ ๊ด€๊ณ„์— ๋Œ€ํ•œ ๋‘ ์ข…๋ฅ˜์˜ ์™ธ๋ถ€ ๊ฒฝ๊ณ„(outer bound)๋ฅผ ์ œ์‹œํ•œ๋‹ค. ์ƒ์ถฉ ๊ด€๊ณ„์˜ ์™ธ๋ถ€ ๊ฒฝ๊ณ„๋Š” ๊ธฐ๋Šฅ ๋ณต๊ตฌ ๋ถ€ํ˜ธ๋กœ๋Š” ๊ฐ€๋Šฅํ•˜์ง€๋งŒ, ๋™์ผ ๋ณต๊ตฌ ๋ถ€ํ˜ธ๋กœ๋Š” ์„ค๊ณ„๊ฐ€ ๋ถˆ๊ฐ€๋Šฅํ•œ (ฮฑ,ฮณ)(\alpha,\gamma) ๋™์ž‘์ ๋“ค์„ ์ œ์‹œํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ์™ธ๋ถ€ ๊ฒฝ๊ณ„๋Š” ์ผ๋ฐ˜์ ์ธ (n,k,d,r)(n,k,d,r) ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ๊ฐ€์ง€๋Š” ํ˜‘๋ ฅ ์žฌ์ƒ ๋ถ€ํ˜ธ๋ฅผ ๊ฐ€์ •ํ•˜์—ฌ ์œ ๋„๋˜์—ˆ๋‹ค. ์ด ์™ธ๋ถ€ ๊ฒฝ๊ณ„๋Š” d=k=nโˆ’1d=k=n-1, r=1r=1์„ ๋งŒ์กฑํ•˜๋Š” ๊ฒฝ์šฐ์— ํ•œํ•˜์—ฌ ์ตœ์ ์˜ ์ƒ์ถฉ๊ด€๊ณ„๋ฅผ ๋ฐํžŒ Prakash ๋“ฑ์˜ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋ฅผ ์ผ๋ฐ˜ํ™”ํ•œ ๊ฒƒ์œผ๋กœ ๋ณผ ์ˆ˜ ์žˆ๋‹ค. ์ฒซ ๋ฒˆ์งธ ์™ธ๋ถ€ ๊ฒฝ๊ณ„๋Š” kk๊ฐ€ ํฌ๊ฑฐ๋‚˜ rr์ด ์ž‘๊ฑฐ๋‚˜ kk์™€ dd๊ฐ€ ๋น„์Šทํ•œ ์กฐ๊ฑด ํ•˜์—์„œ ๋” ์ข‹์€ ์„ฑ๋Šฅ์„ ๋ณด์ž„์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค. ๋‘ ๋ฒˆ์งธ ์™ธ๋ถ€ ๊ฒฝ๊ณ„๋Š” ํ•œ ๋ฒˆ์— ํ•œ ๊ฐœ์˜ ์†์‹ค๋œ ๋…ธ๋“œ๋งŒ์„ ๋ณต๊ตฌํ•˜๋Š” ๊ฒฝ์šฐ๋กœ ํ•œ์ •ํ•˜์˜€์„ ๋•Œ๋ฅผ ๊ณ ๋ คํ•œ๋‹ค. ๋‘ ๋ฒˆ์งธ ์™ธ๋ถ€ ๊ฒฝ๊ณ„๋Š” ๋‘ ๊ฐœ์˜ ๋…๋ฆฝ์ ์ธ ๋ถ€๊ฒฝ๊ณ„(sub-bound)์˜ ํ•ฉ์ง‘ํ•ฉ์œผ๋กœ ํ‘œํ˜„๋œ๋‹ค. ๋‘ ๊ฐ€์ง€์˜ ๋ถ€๊ฒฝ๊ณ„๋“ค์€ ๊ฐ๊ฐ ์„ฑ๋Šฅ์ด ์ข‹์•„์ง€๋Š” ์กฐ๊ฑด์ด ๋‹ค๋ฆ„์„ ์‹คํ—˜์„ ํ†ตํ•ด ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค. ์ฒซ ๋ฒˆ์งธ ๋ถ€๊ฒฝ๊ณ„๋Š” ๋ณธ ๋…ผ๋ฌธ์—์„œ ์ฒซ ๋ฒˆ์งธ๋กœ ์ œ์•ˆ๋œ ์™ธ๋ถ€ ๊ฒฝ๊ณ„์™€ ๋น„์Šทํ•˜๊ฒŒ k/nk/n์œผ๋กœ ์ •์˜๋˜๋Š” ์ฝ”๋“œ์˜ ๋ถ€ํ˜ธํ™”์œจ์ด 1์— ๊ฐ€๊นŒ์šธ์ˆ˜๋ก ๋” ์ข‹์€ ์„ฑ๋Šฅ์„ ๋ณด์ด๋ฉฐ, ๋‘ ๋ฒˆ์งธ ๋ถ€ ๊ฒฝ๊ณ„๋Š” ๋ฐ˜๋Œ€๋กœ ๋ถ€ํ˜ธํ™”์œจ์ด ๋‚ฎ์•„์งˆ๋–„ ๋‹ค๋ฅธ ๊ธฐ์กด์˜ ์™ธ๋ถ€๊ฒฝ๊ณ„๋“ค๋ณด๋‹ค ๋” ์ข‹์€ ์„ฑ๋Šฅ์„ ๋ณด์ž„์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค.Distributed storage systems disperse data to a large number of storage nodes connected in a network. When some of the storage nodes fail, a storage system should be able to repair them by downloading data from other surviving nodes. The amount of data traffic during the repair, called repair bandwidth, is one of the important performance metrics of distributed storage systems. Cooperative regenerating codes are a class of recently developed erasure codes which are optimal in terms of minimizing the repair bandwidth. An (n,k,d,r)(n,k,d,r)-cooperative regenerating code has nn storage nodes, where kk arbitrary nodes are enough to reconstruct the original data, and rr failed nodes can be repaired cooperatively with the help of dd arbitrary surviving nodes. In the regenerating-code framework, there exists a tradeoff between the storage capacity of each node ฮฑ\alpha and the repair bandwidth ฮณ\gamma. The tradeoff of functional repair codes are fully characterized by Shum et al, but the problem of specifying the optimal storage-bandwidth tradeoff of the exact repair codes remains open. In this dissertation, two outer bounds on the storage-bandwidth tradeoff under the exact repair model are proposed. The outer bounds suggest the (ฮฑ,ฮณ)(\alpha,\gamma) pairs that no exact repair codes can achieve but only functional repair codes can. The first outer bound considers general set of parameters (n,k,d,r)(n,k,d,r). This result can be regarded as a generalization of the outer bound proposed by Prakash et al., which specifies the optimal tradeoff of exact-repair regenerating codes for the case of d=k=nโˆ’1d=k=n-1 and r=1r=1. It is verified that the proposed outer bound becomes more effective when kk is large, rr is small, or dย (โ‰ฅk)d~(\geq k) is close to kk. The second outer bound is developed for the case of single node repair (r=1r=1). The bound is union of two independently derived sub-bounds. Each sub-bound has its own condition to be tighter than the other. One sub-bound can be regarded as an extension of the first outer bound for r=1r=1, and becomes more effective in high rates (k/n>12k/n >\frac {1}{2}). The other sub-bound is derived based on the symmetric property of the storage nodes, and is tight in low rates (k/n<12k/n <\frac{1}{2}).1 Introduction 1 1.1 The Family of Regenerating Codes 2 1.2 The Exact Repair Model 5 1.3 Existing Results on the S-B Tradeoff of Exact Repair Codes 7 1.4 Main Contribution 10 2 An Outer Bound on the Storage-Bandwidth Tradeoff of Cooperative Regenerating Codes 14 2.1 Conditions for Parity Check Matrices of Linear Cooperative Regenerating Codes 14 2.1.1 Proof of Lemma 1 24 2.2 An Alternative Proof of Functional Repair Cutset Bound 28 2.2.1 Construction of Hrepair 30 2.2.2 Lower Bounds of rank(Hrepair) 35 2.2.3 Upper Bounds of B 39 2.3 Block Matrices with Full-Rank Diagonal Blocks 39 2.3.1 Definitions 41 2.3.2 Properties of Block Matrices with Full-Rank Diagonal Blocks 43 2.4 An Outer Bound of Linear and Exact-Repair Cooperative Regenerating Codes 55 2.4.1 Construction of Hrepair 56 2.4.2 Lower Bound of rank(Hrepair) 57 2.4.3 Derivation of the Proposed Outer Bound 60 2.5 Evaluation of the Proposed Outer Bound 63 3 An Improved Outer Bound for the Case of Single Node Repair 69 3.1 Symmetric Exact-Repair codes 69 3.2 Conditions for Parity Check Matrices of Single Repair Codes 70 3.3 Construction of Hsingle 75 3.4 Derivation of Two Sub-Bounds 80 3.4.1 Proof of Theorem 2 80 3.4.2 Proof of Theorem 3 83 3.5 Performance Evaluation 86 4 Conclusion 93 Bibilography 95 Abstract (In Korean) 102 Acknowledgements (In Korean) 104Docto

    Multilevel Diversity Coding with Secure Regeneration: Separate Coding Achieves the MBR Point

    Full text link
    The problem of multilevel diversity coding with secure regeneration (MDC-SR) is considered, which includes the problems of multilevel diversity coding with regeneration (MDC-R) and secure regenerating code (SRC) as special cases. Two outer bounds are established, showing that separate coding of different messages using the respective SRCs can achieve the minimum-bandwidth-regeneration (MBR) point of the achievable normalized storage-capacity repair-bandwidth tradeoff regions for the general MDC-SR problem. The core of the new converse results is an exchange lemma, which can be established using Han's subset inequality

    An Improved Outer Bound on the Storage-Repair-Bandwidth Tradeoff of Exact-Repair Regenerating Codes

    Full text link
    In this paper we establish an improved outer bound on the storage-repair-bandwidth tradeoff of regenerating codes under exact repair. The result shows that in particular, it is not possible to construct exact-repair regenerating codes that asymptotically achieve the tradeoff that holds for functional repair. While this had been shown earlier by Tian for the special case of [n,k,d]=[4,3,3][n,k,d]=[4,3,3] the present result holds for general [n,k,d][n,k,d]. The new outer bound is obtained by building on the framework established earlier by Shah et al.Comment: 14 page
    • โ€ฆ
    corecore