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Abstract

Distributed storage systems disperse data to a large number of storage nodes
connected in a network. When some of the storage nodes fail, a storage system
should be able to repair them by downloading data from other surviving nodes.
The amount of data traffic during the repair, called repair bandwidth, is one of
the important performance metrics of distributed storage systems. Cooperative
regenerating codes are a class of recently developed erasure codes which are
optimal in terms of minimizing the repair bandwidth. An (n, k, d, r)-cooperative
regenerating code has n storage nodes, where k arbitrary nodes are enough to
reconstruct the original data, and r failed nodes can be repaired cooperatively
with the help of d arbitrary surviving nodes.

In the regenerating-code framework, there exists a tradeoff between the
storage capacity of each node a and the repair bandwidth . The tradeoff of
functional repair codes are fully characterized by Shum et al, but the problem
of specifying the optimal storage-bandwidth tradeoff of the exact repair codes
remains open. In this dissertation, two outer bounds on the storage-bandwidth
tradeoff under the exact repair model are proposed. The outer bounds suggest

the (v, 7y) pairs that no exact repair codes can achieve but only functional repair
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codes can.

The first outer bound considers general set of parameters (n,k,d,r). This
result can be regarded as a generalization of the outer bound proposed by
Prakash et al., which specifies the optimal tradeoff of exact-repair regenerating
codes for the case of d =k =n — 1 and r = 1. It is verified that the proposed
outer bound becomes more effective when k is large, r is small, or d (> k) is
close to k.

The second outer bound is developed for the case of single node repair
(r =1). The bound is union of two independently derived sub-bounds. Each
sub-bound has its own condition to be tighter than the other. One sub-bound
can be regarded as an extension of the first outer bound for r = 1, and becomes
more effective in high rates (k/n > ). The other sub-bound is derived based on

the symmetric property of the storage nodes, and is tight in low rates (k/n < %)

keywords: regenerating codes, cooperative regenerating codes, repair band-

width, exact repair model, distributed storage systems

student number: 2013-30256
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Chapter 1

Introduction

In distributed storage systems (DSS), a data file is encoded into multiple frag-
ments, and dispersed across a number of multiple storage nodes that are con-
nected in a network. Failure of storage nodes can occur frequently in large-scale
storage systems, due to the large number of storage nodes and unreliability of
data disks. Redundancy must be introduced, in order to protect original data
against node failures. Frasure codes are known as an efficient coding scheme
for distributed storage, in that maximum reliability can be achieved for a given
amount of storage overhead. In practice, Reed-Solomon (RS) codes, which are a
kind of erasure codes, have been employed by several storage systems, including
Facebook [1], Windows Azure Storage [2] and Hadoop Distributed File System

(HDFS) [32], because of their high storage efficiency.



When a node fails, a new node (newcomer) that replaces it is generated by
downloading information symbols from surviving nodes (helpers). The amount
of data transmitted to repair a failed node is called repair bandwidth, and is an
important performance metric to measure the network efficiency of distributed
storage systems. Even though conventional erasure codes are beneficial in terms
of storage efficiency, they have considerable disadvantage in network efficiency
since they requires large repair bandwidth. In a naive repair scheme, the repair
bandwidth of (n, k)-erasure codes is equal to the amount of information stored
in k£ nodes, since the whole data file is required to be reconstructed even for
the repair of a single failed node. Motivated by this problem, various codes
for distributed storages with their own efficient repair scheme such as locally
repairable codes [25-27], and repair-efficient RS codes [28,29] have been intro-
duced recently. In this dissertation, we focus on Regenerating codes that are a

kind of erasure codes optimized in terms of minimizing repair bandwidth [3].

1.1 The Family of Regenerating Codes
Regenerating codes with the parameters of (n, k,d) consist of n storage nodes
that store a data symbols each, and satisfy following two properties.

- Data collection: A data collector can obtain the original data of size B

by downloading « symbols from each of k (< n) arbitrary nodes.



- Node repair: A newcomer node replacing a failed node can be generated
by downloading 3 (< «) symbols from each of d (> k) arbitrary surviving

nodes.

Note that the node repair process of regenerating codes is designed to be
performed for a single node failure. However in large-scale storage systems,
multiple nodes can fail at the same time. In order to recover r node failures by
a regenerating code, rdf symbols should be transmitted across the network. It
is known that if the cooperation of multiple newcomers is allowed, the repair
of multiple nodes can be performed with a total repair bandwidth smaller than
rdB. Cooperative repairing implies that the exchange of a certain amount of
information between multiple newcomers is allowed. The idea of cooperative
repair is proposed in [4] only for the case of d = n — r and generalized to
have arbitrary d in [5]. In [6], the optimal storage-bandwidth (S-B) tradeoff
of cooperative repair is derived, and the codes that achieve the tradeoff are
called cooperative regenerating codes. If the number of simultaneously recovered
node failures is r, two properties of (n, k,d, r)-cooperative regenerating codes

comprising n nodes are as follows.

- Data collection: A data collector can obtain the original data of size B

by downloading « symbols from each of k (< n) arbitrary nodes.

¥ > 1 &) —
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- Cooperative node repair: r newcomers can be generated through two
phases. In Phase 1, each newcomer downloads 51 (< «) symbols from
each of d (> k) arbitrary surviving nodes. In Phase 2, each newcomer

downloads Sy (< df1) symbols from each of the other r — 1 newcomers.

In this case, repair bandwidth per one failed node v equals df; + (r — 1) f.
Note that ka > B, df1 > B2, and v > « hold due to the information flow in the
data collection and the node repair processes, and the reason why d > k holds
is that d < k is contradictory since d nodes are enough for a data collector to
obtain the original data file of size B by repairing £ — d nodes due to the node
repair property. The maximum size of an original data file B that can be stored
in a system using cooperative regenerating codes is determined by parameters

a, p1, and By [6], and is expressed as

g h—1
B < Zlh min (a, (d — th> B+ (r—1p) 52) ) (1.1)
h=1 t=1

where 1 = (ly,...,1,) is an arbitrary vector such that each of its elements is an
integer from 1 to 7, and the sum of all elements is Y 7 _, I, = k. Equation (1.1)
is usually called the cutset bound, since it originated from the network coding
results. In [7], the set of (a,7) pairs satisfying (1.1) with equality is derived
in a closed-form expression, and this forms the storage-bandwidth tradeoff of

cooperative regenerating codes. There are two extreme points on the tradeoff

4 .-':r-\-..ﬁ-! -k"l- 1_-” .-"‘.l!_ T'I.I



curve that correspond to minimum values of a and ~, respectively. These
two extreme points are called the minimum storage cooperative regenerating
(MSCR) points and the minimum bandwidth cooperative regenerating (MBCR)
points, respectively, and the points between them are called the interior points.

Cooperative regenerating codes are the generalized version of regenerating
codes, and reduced to regenerating codes when r = 1. By substituting » =

1, f1 =B, and B2 =0, (1.1) can be converted to

k
B <) min(e, (d—i+1)8). (1.2)
=1

In the case of r = 1, the two extreme points are usually called the minimum
storage regenerating (MSR) points and the minimum bandwidth regenerating

(MBR) points, respectively.

1.2 The Exact Repair Model

The storage-bandwidth tradeoff of cooperative regenerating codes given by (1.1)
assumes the functional repair model. In the functional repair model, informa-
tion symbols of failed nodes are allowed to be replaced by different symbols if
the newly formed n nodes including the newcomers can operate the function-
alities of cooperative regenerating codes. However, the functional repair model

is not usually employed for practical reasons. Firstly, huge network overhead is

¥ > 1 &) —
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incurred since encoding and decoding rules should be updated every time the
node repair occurs. Secondly, under the functional repair model, a systematic
form of codes cannot be maintained. To solve these problems, the symbols of
newcomer nodes need to be regenerated to be the exact replica of failed nodes,
and this repair model is called the ezxact repair model.

Existing explicit designs of regenerating codes usually assume the exact
repair model, and most of them are constructed at two extreme points, the
MSCR and the MBCR points. For the case of single node repair (r = 1), con-
structions of exact-repair regenerating codes in two extreme points are shown
to be possible in general (n,k,d) parameters. Explicit construction of exact
repair codes in the MSR points considered in [8-10,33] and the construction
of the MBR codes is introduced in [9] and [11]. In the case of cooperative
repairing (r > 2), the design method for the exact-repair MSCR codes with
d =k [12] and k = 2, d > k [13] were proposed. In [14], it was proved that
construction of the exact MSCR codes with r = 2 is possible for general (n, k, d)
parameters, by showing that (n, k,d,1)-MSR codes can always be converted to
(n,k,d —1,2)-MSCR codes, and vice versa. (In the functional repair case, it
was proved that the node repair properties of (n,k,d — r + 1,r)-MSCR points
for 1 <r <d-k+1 can be satisfied with the same code construction. the

parameter r can be chosen opportunistically depending on the number of avail-

) 3 11 &L —
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able helper nodes. The interested reader is referred to [30,31].) Shum et al. [15]
first designed the exact-repair MBCR, codes in the case of n = d+1r, d =k, and
it was generalized to n = d+r, d < k case in [16]. Wang et al. [17] proposed

the design method for the exact MBCR codes for general (n,k,d,r).

1.3 Existing Results on the S-B Tradeoff of Exact

Repair Codes

The size of the original file B stored in exact-repair regenerating codes also
satisfies the upper bound given in (1.1), because exact-repair codes are also a
kind of functional-repair codes. As stated in the previous section, at the two
extreme points, the MSCR, and MBCR points, exact-repair cooperative regen-
erating codes can be built, and the condition of exact repair does not impose
any penalty (except for the MSCR points with » > 3). However, in interior
points, it is known that cooperative regenerating codes with (a, ) parameters
satisfying (1.1) with equality cannot be constructed with the exact repair model
in general. The problem of specifying the storage-bandwidth tradeoff of exact-
repair regenerating codes remains open except for the cases of two extreme
points.

An example of the storage-bandwidth tradeoff curve is illustrated in Figure



(n,k,d,r) =(8, 4,6, 2)
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Figure 1.1: The storage « vs. bandwidth v tradeoff of (n, k,d,r) = (8,6,4,2)-

cooperative regenerating code.
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1.1. The curve with the blue and solid line is the set of (a, ) points satisfying
(1.1) with equality. Since any exact repair code is also a functional repair code,
the curve can be viewed as an outer bound on the S-B tradeoff of the exact-
repair codes. If an («, ) is below an outer bound, it is impossible to construct a
regenerating code operating at the pair of (a, ). The curve with red and dashed
line is usually called the space-sharing line, which is a line segment connecting
the MSCR and MBCR points. A regenerating code operating at a point on
the space-sharing line can be simply obtained by space-sharing scheme where
an MSCR code is used in a fraction of original file and the remaining fraction
is encoded by an MBCR, code. The space-sharing line is an inner bound on
the S-B tradeoff of exact repair codes. The optimal S-B tradeoff curve of exact
repair regenerating codes must locate in between two curves.

In the case of single repair (r = 1), several works regarding the inner and
outer bound on the S-B tradeoff of exact-repair regenerating codes have recently
been reported. In [11], it was shown that interior points of the cutset bound
(1.1) are impossible to achieve with exact-repair regenerating codes, except for
a small region close to the MSR points. Tian derived the optimal S-B tradeoff
of exact-repair regenerating codes in the case (n,k,d) = (4,3,3) [18] by using
the computer-aided proof (CAP) approach [36], and also extended this to the

(5,4,4) case [19]. It means the functional repair tradeoff (1.1) is not even

) 3 11 &L —
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achievable asymptotically with any exact repair codes.

Recently, in [20-23, 34, 35,37-39], improved inner and outer bounds on the
S-B tradeoff of exact repair regenerating codes for more general (n,k,d) pa-
rameters are proposed. Specifically, In [21], it was shown that if regenerating
codes with parameters of £k = d = n — 1 have linear encoding and decoding
procedures, the properties of the regenerating codes can be expressed by some
conditions of its parity check matrix. By exploiting those conditions, in [23],
an outer bound on the S-B tradeoff of linear regenerating codes was proposed.
The outer bound is identical to the inner bound proposed in [24] in the case
of Kk = d = n — 1, which implies that the optimal S-B tradeoff of exact repair

linear regenerating codes is characterized in that case.

1.4 Main Contribution

In this dissertation, we propose the two outer bounds on the storage-bandwidth
tradeoff on the S-B tradeoff of linear regenerating codes. We propose generalized
conditions of the dual codes of cooperative regenerating codes, and derive the
outer bounds from them. The outer bounds suggest the («,7) pairs that no
exact repair codes can achieve but only functional repair codes can.

The following theorem describes the first outer bound on the S-B tradeoff

of linear cooperative regenerating codes which is mainly discussed in Chapter

) 3 11 =1L —
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Theorem 1. Assume an (n, k, d, r)-linear cooperative regenerating code. If the

exact repair model is used, then an upper bound of the file size B is expressed

as
s—1 2 <
B< d N ymi ( ,h,Al>, 1.3
_s+1( +r)a+s(s+l)hz_:1 pmin ( sa, ha, Ay, (1.3)
where 1 = (I, ---, l;) denotes a vector whose elements are integers satisfying

1< <rforl<h<gand the sum of its elements Z‘Z:l lp, equals k. s is an

integer with 1 < s < g and A}l is defined as

1 (d—k+30 )8+ (r— 1) B, ifs=1,

(d—k+2?:1 lt)ﬁl + Ch<7’ — lh)ﬁQ, if 2 S S S g,

where ¢, = h — by, and by, is defined as

by, = Al. 1.5
" ey o
2iealt<r=ln
Proof. The proof of Theorem 1 will be discussed in Section 2.4. 0

To the best of our knowledge there have been no results considering the
outer bounds on the S-B tradeoff of the multiple repair case (r > 2). We derive
the outer bound described in Theorem 1 by constructing a rank lower bound of
parity check matrices of cooperative regenerating codes. This method is first
used in [23], which proposed an outer bound on the S-B tradeoff for the case of

d=k=n—-—1andr =1.

11 i ‘_'-]i o



The second outer bound, considered in Chapter 3, is developed for the case
of single node repair (r = 1). We derived the two sub-bounds independently,

where one is stated in Theorem 2, and the other is in Theorem 3.

Theorem 2 (Sub-bound 1). Suppose a linear regenerating code under the
exact repair model with parameters (n,k,d,«, ). Define 7 = d — k + 1 and
Q= {@j The size of data file B is bounded by

s(s+1)

s(s —1) q(g—1)

5 B < 5 ka + spa + 5 R(a, )
+%(k —p—(g—r)k—p+(g+1)7-1)8
s—1
+ Z min (tre, (¢ — 1) R(e, B) + 7(k —p — (¢ — 1)7)5))
t=1

(1.6)

where s, g and p are arbitrary integers satisfying 1 < ¢ < Q,0 < p < k—(¢—1)7,

and 1 <s<d— (7 —1)g —p. R(a,p) is defined as

R(a,8) =Y min(a, (1 +i— 1)B). (1.7)
i=1
Proof. The proof of this theorem will be discussed in Section 3.4.1. O

Theorem 3 (Sub-bound 2). Suppose a linear regenerating code under the exact
repair model with parameters (n, k, d, a, ). The size of data file B is bounded
by

opB < o0+ 03f (1.8)

12 i ‘_'-]i o



where op, 0, and og is defined as
op=02r+k—p—1)(s*+5—-2)+2(k—p—1),
oa=2(k—p—1)p+ 27+ k—p—1)(sk+2p)(s—1),
op=02r+k—p—-1)(k—p)(k—p+2(s—1)T—1),
and s, p are arbitrary integers satisfying 1 < s<k—p—1and 2 <p <k.
Proof. The proof of this theorem will be discussed in Section 3.4.2. O

Each sub-bound has its own condition to be tighter than the other. One
sub-bound is more effective in high rates (k/n > 1), but the other sub-bound
becomes tighter when the code rate is low (k/n < %) In addition we shall

verify that the two sub-bounds are asymptotically optimal in very high or low

rates.
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Chapter 2

An Outer Bound on the Storage-Bandwidth Trade-

off of Cooperative Regenerating Codes

2.1 Conditions for Parity Check Matrices of Linear

Cooperative Regenerating Codes

Suppose (n, k, d, r)-cooperative regenerating codes encode a 1 x B message vec-
tor m into a 1 X na codeword c. The first o symbols of ¢ correspond to the «
symbols stored in the first node, the next o symbols are stored in the second
node, and so on. Let ¢y, --- ,c, denote n code symbols of ¢, each of which has
length «, i.e.,

c=l[cica - Cy (2.1)

We define linear cooperative regenerating codes as the cooperative regen-

14 A =T



erating codes where the encoding and decoding process performed in the data
collection and node repair process is linear. A linear cooperative regenerating
code with parameters of (n, k,d,r) can be regarded as a kind of (na, B)-linear
codes, and there exist the B x na generator matrix G and the (no — B) x na

parity check matrix H which satisfy
c=mG, GH! =o, (2.2)

rank(G) = B, rank(H) = na — B. (2.3)

Linearity of data collection process follows from (2.2). The following sufficient
conditions ensure that the node repair process of (n, k, d, r)-cooperative regen-

erating codes are linear.

o FEach of the 81 symbols sent from a helper to a newcomer in Phase 1 is a

linear combination of the o symbols that the helper stores.

o Each of the 5 symbols sent from newcomer m to newcomer i (# m) in
Phase 2 is a linear combination of df3; symbols that newcomer m received

from its corresponding d helpers in Phase 1.

o Each of the a symbols a newcomer obtained is a linear combination of
v = df1+(r—1)P2 symbols that the newcomer received from the d helpers

in Phase 1 and from the other » — 1 newcomers in Phase 2.

15 J:rﬁ'! _CI:I_ 1—l| '.-j]_
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Lemma 1 gives some conditions that the generator and parity check matrices
of linear cooperative regenerating codes must satisfy. In order to simplify the
notation, we shall use the concept of thick columns and thick rows. Assume a

matrix M consists of mn submatrices as

My; Mg ... My,
Mo My ... My,
M —
Mml Mm2 EER an
Forsets I C [m] (:={1,--- ,m})and J C [n], let M[; be the matrix constructed

by collecting submatrices whose indices ¢ and j belong to I and J, respectively.
Let My, = [M;; --- M;,] be the ith thick row for 1 < i < m and My, =
[Mr{] e M%j ’ be the jth thick column for 1 < j < n, where the superscript
T denotes the transpose operator. Specifically, out of na columns of G and H,
the first o columns form the first thick column, the next a columns correspond
to the second thick column, and so on. In addition, we will use the following
notations in the rest of the dissertation. |A| denotes the cardinality of a set
A. For some integers m and n, [m] and [m,n| denote the sets {1,2,--- ,n} and
{m,m +1,--- ,n}, respectively. For a matrix M, let S(M) and S(MT”) be its
column and row spaces. I,, denotes the n x n identity matrix and 0 denotes a

zero matrix where every element is 0.

) 3 11 =1L —
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Lemma 1. Consider an (n,k,d,r)-linear cooperative regenerating code with
n = d+r. The parity check matrix H satisfies the following two conditions, (i)

and (ii).

(i) The rank of a matrix constructed by collecting n — k arbitrary thick

columns of H is (n — k)a.

(ii) For any index set R = {i1,--- ,ir} (i1 < --- <i,) which is a subset of [n]

and satisfies |R| = r, there exists an ra X no matrix

R R R
Aill Ai12 et Ailn
R R R
A’izl Ai22 te Aign
Hp =
R R R
| AR, AR, AR

satisfying the following Condition (a)-(c), where Af-} is the ax v submatrix

of Hr for i € R and j € [n].

(a/) AER == I7"Oé

(b) If j € D :=[n]\ R, then for all i € R,
Ag = Pi]’ + Tij = Pij + Z Tij,my (24)
meR\{i}
such that

S(P}) cUY

5
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s(rl ycukb (2.6)

ij,m mjs

and

rank(Tip,m) < B2, (2.7)

where Ui]; is a subspace whose dimension is smaller than or equal to

B

(c) S(HE) C S(HT)
Proof. See Subsection 2.1.1. O

Remark 1. For the case of k = d, Condition (i) follows from Condition (ii).
Let Ry C [n] be a set of indices of n — k (= r) thick columns. Since Hpg,
obtained from Condition (ii) contains I(,,_), in the location of the n — k thick
columns by Condition (ii)-(a), the row space of the matrix that consists of the

n — k thick columns includes S(I(;,—x)a)-

Remark 2. Lemma 1 can be regarded as a generalization of the conditions
for linear regenerating codes stated in [21]. If r = 1, Lemma 1 is reduced to

Proposition 2.1 of [21].

Remark 3. Condition (ii) originates from the cooperative node repair property.
The index sets R and D used in Condition (ii) of Lemma 1 correspond to the

sets of newcomers and helpers, respectively. Hg describes the case that the r
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o T
node 4

newcomer 2’

newcomer 4’

Figure 2.1: An example of node repair process of (4,2, 2,2)-cooperative regen-

erating codes with («, 51, 82) = (2,1, 1). This example is borrowed from [7].

nodes which belong to R are repaired with the help of d nodes which belong

to D. P;; and T;; are related to Phase 1 and Phase 2, respectively. Each

row of Hi corresponds to one of ra symbols of r newcomers. According to

Condition (ii)-(c), every row of Hr must be orthogonal to all of nav codewords.

It implies that each of ra symbols of 7 newcomers can be represented by a linear

combination of da symbols of d helpers. Refer to Subsection 2.1.1 for details.

We present a simple example of (4,2,2,2)-cooperative regenerating codes

for reader’s better understanding. Consider an (8, 4)-linear code with generator

19



matrix

10001020

01000201

001 01010

000101O0T1

The message vector m = (Aj, Ao, By, By) is encoded into the codeword ¢ =
(A1, Ag, B1, By, A1+ B1,2A5+ By,2A1+ By, As+Bs). Thiscodeisa (n,k,d,r) =
(4,2,2,2)-cooperative regenerating code with (a, 81, f2) = (2,1,1), and we will
verify that its parity check matrix H satisfies the conditions of Lemma 1. As
illustrated in Figure 2.1, there are n = 4 nodes, each of which has a = 2

symbols. The parity check matrix H is expressed as

H has 4 thick columns, and it can be easily verified that Condition (i) is satisfied
since every matrix made of n — k = 2 arbitrary thick columns has full rank.
In Figure 2.1, generation of two newcomers, newcomer 2’ and 4/, which

replaces two failed nodes, node 2 and 4, are described. Condition (ii) of Lemma
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1 gives

2,4 2,4 2,4 2,4
ALY AED AGY ARY
Hipgy =

2,4 2,4 2,4 24
| ARY ARY ARY AR

- (2.10)

0 100 0 -1 01 |
which corresponds to the set of two indices of failed nodes R = {2,4} can be
obtained from Condition (ii) of Lemma 1. It can be verified that each rows of
H /5 4y is orthogonal to every row of G, and this implies the row space of Hs 43
belongs to the row space of H (Condition (ii)-(c)).

To verify that Hy, 4 satisfies Condition (ii)-(b) of Lemma 1, consider the
repair of the two symbols of newcomer 2’. As shown in Figure 2.1, newcomer 2’
uses three symbols A; (downloaded from node 1 in Phase 1), A; + Bz (down-
loaded from node 3 in Phase 1), and By (downloaded from newcomer 4’ in

Phase 1) to generate By and Bj as
B =—-A + (A1 + Bg) + O(BQ), (211)
By =041 + 0(A1 + Bg) + 1(32). (2.12)

Although Bj is downloaded from newcomer 4’ it also originates from the sym-
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bols sent by node 1 and 3 to newcomer 4. We have

By = (—2)A2 + (2A2 + BQ). (2.13)

By combining (2.11)-(2.13), we have

1 0 1 0
aom ]| [ a
0 1 0 2
-1 0
+|:A1+BQ 2A2+BQ:|* (214)
0 -1

2,4 2,4
:[Bl BQ:|A§2}+|:A1 A2:|A§1}
2.4
+ |: Ay + By 245+ By } AéS b= 0. (2'15)

By classifying the symbols according to the phase in which the symbol was

delivered, AﬁA} and A%A} can be decomposed into two components as

Aif"‘} = Po1 + Ty
= Po1 +Tay
1 0 0 0
= + , (2.16)
0 0 0 2

” 1] 2] &)



A%M = Po3+ Tos
= Po3+ Ta34
1 0 0 0
= + , (2.17)
0 0 0 —1

where Po; and Pa3 are related to Phase 1, and Ts; and To3 are related to
Phase 2. Similarly, by considering the repair of newcomer 4’, we can obtain

AEA} and AEA} as

AEA} = Py +Tyu
= Py +Ty2
0 O -1 0
= + , (2.18)
0 +1 0 O
AE,A} = Py3+ Ty
= Py3+Tu32
0 O -1 0
= + . (2.19)
0 -1 0 O

If subspaces Uf;, UL, UL, and UL are defined as U, = S(PL)), Uf =
S(P1), UL = S(PL), and UJ; = S(PL,), (2.5) is straightforward, and (2.6) is

also satisfied since

S(Tgl,zl) - S(P4Tl) = Uéﬁv S(TLQ) - S(Pgl) = Uéq:

93 J:rﬁ'! _CI:I_ 1—l| '.-j]_
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5(T2T3,4) - S(P4T3) = Ug, and S(T:ipgz) - S(Pripg) = U2]§-

Lastly, (2.7) can also be verified since
rank([Ta14 Ta34]) =1 < 35

and rank([T41,2 T4372]) =1 § 62.

2.1.1 Proof of Lemma 1

Condition (i) and (ii) of Lemma 1 can be derived based on the data collec-
tion property and the node repair property of cooperative regenerating codes,

respectively. Proof of (i) and (ii) is as follows.

Proof of (i). Let K be an arbitrary subset of [n] whose cardinality is k, and
define K = [n] \ K. Suppose (na, B)-linear codes encode a 1 x B message
vector m into a 1 X na codeword c. Let cgx be the ka x 1 vector which contains
k 1 x a code symbols that correspond to the index set K, and let Hgi be the
matrix formed by collecting k thick columns of H that correspond to the index
set K. Similarly, cg and Hy can be defined by using K.

Assume that rank(H ) is smaller than (n — k)a. Since the columns of Hy

are linearly dependent, there exists a nonzero vector s of length (n — k)a such

I

i) S.

that sHTK = 0. Let ¢/ be a row vector of length na with ¢, = 0 and ¢

24 =L ]l o



c’ is a codeword because
cH" = 0H}; + sHL = 0. (2.20)

However, since ¢/ = 0, the message vector m cannot be repaired from ¢/, and

it contradicts the data collection property.

O
Proof of (ii). Condition (ii) of Lemma 1 states that for an index set R =
{ir, -+ iy} (i1 < -+ < ip) such that R C [n] and |R| = r, there exists an
ra X na matrix Hr with rn o X a submatrices Aﬁ,l? e ’Aﬁ,n satisfying the
following conditions (a)-(c)
(a) AR, =1,,
(b) If j € D :=[n]\ R, then for all i € R,
Ag = Pij + Tij = P,’j + Z Tij,m7 (2.21)
meR\{i}
such that
S(Pf) c U, (2.22)
S(Th,.) C Ui, (2.23)
and
rank(Tip.m) < B2, (2.24)

where UZ-I; is a subspace whose dimension is smaller than or equal to (.

: N & o 8t



(c) S(HE) C S(HT)

For a fixed index set R, consider a node repair process where the r newcom-
ers that corresponds to the index set R are cooperatively repaired with the help
of d nodes that corresponds to D = [n]\ R. For i € R and j € D, node j sends
node i a 1 x 31 vector s;; whose elements are linear combinations of elements
of ¢; = (¢(j—1)at1> "> Cja) in the first phase of the node repair process. This

encoding process can be specified by o x 31 matrix ®;; as
Sij = qu)ij fori € Rand j € D. (225)

In the next phase, node m € R\ {i} sends node i a 1 x 33 vector t;,, whose

elements are linear combinations of the df; elements of s,,;,,- -+ ,Smj,. ie.,
Wi,
tim = [Smjl cee Smjd] . (226)
| Vi |
= s, (2.27)
j€D
= > bV, (2.28)
j€D

where \Ilfm is a B1 X P2 matrix for m € R\ {i}. According to the node repair

property, ¢; = (C(i—1)a+1> *** s Cia) can be reconstructed by linearly combining
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dfpy symbols of sj;s (j € D) and (r — 1)82 symbols of ti,s (i € R\ {i}) as

c;, = ZsijLiﬁjl_’_ Z tszﬁ?1

JjeD meR\{i}
- ch{%ijur > ®,,; 0 L2}, (2.29)
Jjeb meR\{i}

8 8 . . . .
where Lij1 and L;? are encoding matrices with size of 81 x a and (2 x «,
respectively for j € D and m € R\ {i}.

For given indices of newcomer nodes R = {i1, i, -, iy} (i1 <ig < -+ <

ir), define an ra X na matrix Hy, as

Al Al
AR, L AR

where Aﬁ (t € Rand j € [n]) is an a X « submatrix of Hr and defined as

follows. If j € R,

I, ifj=i
Al = (2.31)
0 ifjeR\{i}.

If j € D, Af} is the sum of two o x o matrices, P;; and T;;, where

Pl = —o;L]}, (2.32)

T =- Y 3,V 12 — DI v (2.33)
meR\{i} meR\{i}

By (2.31), it is clear that Hp satisfies Condition (a). Moreover, by (2.32)

and (2.33), it can be easily verified that Hp satisfies (2.5) by letting UZ-I; =
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S ((ijl )T> for all i € R and j € D. Since

[Tijim = Tijgml
= (@) ()]

B2 J1 T J1 T
= - (Lzm) (q)mjlqlim> ((I)mjlqlzm> ’

(2.34)

rank([Tijim - Tijum]) < rank(Liﬁ%) < [y is satisfied and (2.7) can also be
verified.

By using (2.31)-(2.33), (2.29) can be converted to
ci+ Y ci(Af)T =c[Alf AT - AT =0. (2.35)
jeD

Since (2.35) must be satisfied for every codewords ¢, S(HE) must be orthogonal

to S(GT) and belong to S(HT). This implies Condition (c).

2.2 An Alternative Proof of Functional Repair Cut-

set Bound

In this section, we prove the cutset bound of functional-repair cooperative re-

generating codes (1.1) by using conditions given by Lemma 1.

¥ [ 11 =1
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Before the specific description, it should be emphasized that while we derive
the cutset bound (1.1) and the proposed outer bound (in Section 2.2 and 2.4,
respectively), we only consider the case of n = d + r. This is because every
(n, k,d,r)-cooperative regenerating code with n > d + r can be regarded as a
(d + r, k,d,r)-cooperative regenerating code if some of d + r nodes are chosen.
Note that both the cutset bound (1.1) and the proposed outer bound (1.3) do
not depend on the value of n, and yield the same outer bound under the same
values of k, d, and r regardless of n. Therefore, we assume n = d+r in the rest
of the chapter.

The proof of (1.1) can be summarized in a few steps as follows.

(1) Choose an arbitrary vector 1 = (I1,---,l;) whose elements are integers

satisfying 1 <[, <r forevery 1 <h<gand > _, 1=k

(2) Construct the na x na matrix Hyepair that corresponds to 1 by properly

combining the rows of Hg given by Lemma 1.

(3) Find a lower bound of rank(Hyepair). Since S(HZ

repair

)y ¢ S(HT), the

lower bound is also a lower bound of rank(H).

(4) By using the fact that B = na — rank(H), an upper bound of B can be

derived.

We will use the technique that uses the lower bounds of rank(H) to find the
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upper bounds of B not only in the proof of (1.1), but also in the proof of the
proposed outer bound (Theorem 1) described in Section 2.4. In addition, we

will reuse the matrix H,¢pqir constructed in this section in Section 2.4.

2.2.1 Construction of H,.p,,

Consider a vector 1 = (I, ---, ;) such that 1 < [, < r for h € [g] and

}91:1 I, = k. By adding an element lp = n — k to the left side of 1, if it
is extended to 1* = (lo, l1, -+, lg), >5_oln = n is satisfied. Define sets
Ri,Rs,--- , Ry as

Ry=R,UN, forl1<h<gy, (2.36)

where

R/h =

h—1 h
dDh+1Y] zt] (2.37)
t=0 t=0

and Np, is defined to satisfy
h—1
N}, C [Z lt] such that |Np| =r —Ij. (2.38)

t=0

By Condition (ii) of Lemma 1, for every 1 < h < g,

Afn AL Al
"l v T i"n
Afn AL Al
if1 k2 T iln
Hpg, =
Ry, Ry, Ry,
I AZ.7,}1 Ai';Q Ai’,}n |
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can be obtained, which corresponds to Ry, := {i? --- i} (i" < --- < i) defined
in (2.36), where Af}h (i € Rp,j € [n]) is an a X a submatrix of Hg, . Note that

. . / . . . . .
Ny = {if, - ,zf}ilh} and R, = {Z?—lhﬂv .-+ ,iM}, since every element in N}, is

smaller than any element in R,h. By collecting the last I thick rows out of r

thick rows of Hg, , an [ o X na matrix A can be obtained. By combining

Rh [n]
them vertically, we can obtain an na X na matrix

HH

Al
Hrepair = Rl s (239)

LAY ]
where H is the (na — B) x (n — k)a matrix constructed by collecting the first
n — k thick columns of the parity check matrix H, and Hf (:= (HTH)'H7) is
its left inverse such that HIH = I(;,—k)a- According to Condition (i) of Lemma
1, H must have full column rank, and its left inverse always exists. Note that

the first (n — k)a columns of H'H are equal to H'H = Ii—p)a-

Let no rows of Hyepair be grouped in the pattern of lpa, - - -, [go. By group-
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ing its columns in the same pattern, H;cpqir has (g + 1)2 submatrices as

H070 H071 Ce HO,g
Hl,O H171 C Hl,g
Hrepai'r = s (240)
L Hyo Hy1 ... Hgy ]

where Hj, ; denotes the submatrix with the size of [;,a x [y contained commonly

in the hth thick row and the tth thick column of H,cper. Note that
[Hoo---Hy,] = HH (2.41)

and

H), = Ang;, for1<h<g. (2.42)
Specifically, Hp, 5, is the hth diagonal submatrix with the size of I, x lo. We
have already mentioned that Hp o = HH = In—k)e - In addition, it is easily
verified that

Hh,h = Ilhoz for 1 < h < g, (243)

according to Condition (ii)-(a) of Lemma 1.
Figure 2.2 illustrates an example of constructing Hy,¢pqir that corresponds
to I* = (lo, l1,12,13,14) = (6,1,2,3,1). The parameters of the cooperative regen-

erating code are set to be (n,k,d,r) = (13,7,8,5). The left side of Figure 2.2
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HH
:II )
\f2 ]
H'H
Ia
IOﬁ
L,
Ia
Ia
H{1,2.3,4,7} :
Ln—k)a
IOL
I, |
I,
T Holojoo L,
I, 0 0I, O
H{1,277,8,9} 10 010 I,
10 0 I, 0 0
L, 0 0 I, 0
Lo 0 0 0 0 I,
IaI 0 0[o o L,
Lo Hrepair
H{1,7,10,11,12}
Ia
Ia
IO(
L,

Hyi 758013}

Figure 2.2: An example of construction of H,epeir. The code parameters

(n,k,d,r)=(13,7,8,5) and 1* = (lp, l1,l2,13,14) = (6,1,2,3,1) are used.

i L, ]
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expresses Hg,,--- ,Hpg,, and HH. The smallest squares denote a X o compo-
nents. For 1 < h < 4, the r? = 25 shaded squares correspond to Agz Ry which
equals I, by Condition (ii)-(a) of Lemma 1. The rectangle enclosed by bold

lines corresponds to Aftn

R o)’ which participates in the construction of Hyepqir-
h n

It can be verified that the lower part of the blue-shaded squares becomes Hy, 5,
the hth diagonal submatrix of H;cpeir, which is still an identity matrix, Ij, ,.
The right side of Figure 2.2 illustrates Hy¢pqir, and its (g+ 1)2 = 52 submatrices

are emphasized by bold lines.

Remark 4. As stated in (2.36), Ry, is the union of two disjoint subsets R
and Np for 1 < h < g. R;Ls are given deterministically by (2.37). However,
Nps are not deterministic, and there can be various forms of N that satisfy
Ny C [Z?:_ol lt] and |Np| = r — I. The gray-shaded region of Figure 2.2
corresponds to Aﬁ?N for 1 < h <g. Aﬁi]\/ becomes a zero matrix because

hivVh h

it is a part of the lower triangular part of Agz R, (= I,4). Hence, the part of

Afn

RS 1 that is a zero matrix can be controlled by properly selecting Ny,.

Though the position of zero matrices is not important in this section, it will

play an important role in the proof of Theorem 1 in Section 2.4.
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2.2.2 Lower Bounds of rank(H,p.;,)

H;cpair has g + 1 thick columns, Hyg g1 0, -+, Hjg g 4. Define dg, d1,- -+, 04 as

50 = rank(H[Qg],O),

and

6, = rank([Ho g0 - - Hjo g).n]) — rank([Hyo g0 - Hp g n1]),

(2.44)

if1<h<g (245)

Therefore, §; indicates the increment of rank after the hth thick column is

added.

Since Hoo = I(;,—)as n — k columns of Hyg g o are linearly independent.

This implies

do = rank(Ho ) = (n — k)«

If h > 1, 6 is lower bounded by

op > rank([Hpo - - Hpp])—rank([Hp - Hppo1])
Z rank(thh) — rank([Hh70 s Hh,hfl])

=l — rank <AR7 > ,
R, Ly,

where Ly, is defined as

h—1
Ly = [th] \ Ny,
t=0

35 h‘; %
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and (2.49) follows from the relations Hy ,, = I, , and A?N = 0 (See Remark
hivVh
4).

Because of the fact that L, C [n]\ Ry, every a x a submatrix contained in

Afn  can be expressed as
R, Ly,

Agh = Pz’j + Tij = Pij + Z Tij,m (251)
meR\{i}

by Condition (ii)-(b) of Lemma 1 where definitions of P;;, T;; and T;j,, are
given in Lemma 1. Define matrices P;j and T;j as
P;j = Pij + Z Tij,m7 T;j = Z Tij,m- (252)
meR, \{i} meNp
fori € R;l and j € L. Therefore, Agh = P;j + T;j is satisfied for every i € R;L

and j € Lp and we have

Rh o / /
A =P T T (2.53)

By using Condition (ii)-(b) of Lemma 1, rank(PlR,L ) and rank(T/R/L ) are

hh hh
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upper bounded by

rank(PR;th) < Zrank(PR;j)
JeLn
< Y am@ )
J€Ln IER),
< D)) dim(Uy)
J€Ln 1R,
< |RWlILy|By

h—1
= |Ry| (th — um) b1
t=0
h
= lp(d—k+ th)ﬁl
t=1

and

rank(TR;th) < Zrank(TiLh)
i€R;,

= Z Z rank(T;r, m)

lGR;L mENh

IN

iER;l meNy,

< |Ry||N3|B2

A

= Ip(r —1y)Bo,

> Y rank(Tigupry)m)

(2.54)

(2.55)

(2.56)

(2.57)

(2.58)

(2.59)

(2.60)

(2.61)

(2.62)

(2.63)

(2.64)

respectively, where the operator @@ denotes the sum of subspaces, and (2.55)
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follows from

S(Py)T) = s®L+ Y Th,) (2.65)

meR) \{i}
c sPHe & ST}, (2.66)

meR, \{i}
C Uj® P Un (2.67)

meR, \{i}
= Puy, (2.68)
IR,

for every ¢ € R;l

By applying (2.59) and (2.64) to (2.49), we have

> - Al 2.
o > lpa—rank ( Rth) (2.69)
> o — (rank (PR/th) + rank (TR/th)) (2.70)
h
> o — (lh(d — k4> 1)B+ In(r — zh)ﬂ2> : (2.71)
t=1

In addition, since §, a rank increment, must be positive, §; is lower bounded
by

h
0p, > lp min (0, a— ((d —k+ th)ﬂl + (r— lh)ﬁ2>> . (2.72)

t=1

Since rank(H,epair) = > 7o 0n, rank(H,epqir) is lower bounded by
P h=0 P

g

rank(Hrepair) = Z 5h
h=0
g h
>(n—ka+) I min<07 a<(d —k+ Y )R+ — zh)52>) . (2.73)
h=1 t=1
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2.2.3 Upper Bounds of B

Since the rows of Hycpair originate from Hpgy, - -+, Hg,, by Condition (ii)-(c) of

Lemma 1, S(H/,

Fopair) Must be a subspace of S(H”). Hence, the lower bound

of rank(Hy¢pair) is also a lower bound of rank(H). By using B = na — rank(H),

an upper bounds of B can be derived as

B = na — rank(H) (2.74)
< no — rank(Hyepair) (2.75)
g
=(n—-—k+ Z Ip)oe—rank(Hyepqir) (2.76)
h=1
g h
= Z I min (o, (d — k + Z )61+ (r — 1) B2) (2.77)
h=1 t=1
g g
= Z lh min ((l, (d — th)ﬁl + (7‘ - lh)ﬁg), (2.78)
h=1 t=h+1
By using (l;, l;_l, o 1) o=y Loy oy 1), (1.1) s derived as
g h—1
B <Y lymin o, (d— Y 1)1+ (r—1,)B). (2.79)
h=1 t=1

2.3 Block Matrices with Full-Rank Diagonal Blocks

Our objective is to find a tight upper bound on the file size B stored in a
given linear cooperative regenerating code with parameters (n, k,d,r, o, 5). In

Section 2.2, we tried to find a lower bound of H;cpqir, and converted it into an

1 [
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upper bound of B based on the relation that

B = na—rank(H) (2.80)

< no — rank(Hyepgir)- (2.81)

where (2.81) holds since the matrix H.cpqir is constructed to satisfy S (Hz;paiT) C
SHET).

H, cpqir is a block matrix which has g? submatrices as

H070 H071 - H()’g
HI,O Hl,l - Hl,g
Hrepair = ) (282)
L Hgo Hg1 ... Hgy i

In order to find a tighter lower bound on the rank(Hjcpqir), the property of
H,cpqir we shall focus on is that the every diagonal submatrices of H,epgir is
nonsingular as

Hh,h = Ilha for 0 < h < g. (283)

In this section, we shall derive the general properties of the block matrices
with full-rank diagonal blocks. The properties and definitions provided in this
section will be used not only in the derivation of Theorem 1 in this chapter,
but also in the derivation of the second outer bound (Theorem 2 and 3) which

will be discussed in the next chapter.
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2.3.1 Definitions

In this subsection, we present several definitions of the block matrices, which
will be used in common for the derivations of the outer bounds on the regener-
ating codes in this dissertation.

Suppose a block matrix M is broken into n? submatrices as

M171 M172 L M17n
M271 M272 o M27n
M= =[M;---M,]
M,1 M,> ... My,
where My, --- , M, are n thick columns of M. The number of columns (rows)

in each thick column (thick row) does not have to be identical.

We will define n — 1 matrices M), ... M®=1 which originate from M.
First of all, define MM := M. M® has n? submatrices and n thick columns
as M does. Let Ml(lj) be a submatrix of M() for 4,5 € [n] and MEI) be the ith

thick column of M() for i € [n] such that

1 1 1
M M)
M ) (1)
MY M M
M(l) _ 2,1 2,2 2n _ [Mgl) o Mg) ‘
MY MY L M,

i 11 =1
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For 2 < s < n—1, let M) denote a block matrix with n(n — s+ 1) submatrices

Mgs) . ,Mgle and n — s + 1 thick columns MES), . ,Mgf) such that

S

M) M, e MY
(s) (s) (s)
M) — 2, 2,5+1 20 | M) .. MS)] ‘
ML ML M,
M® M®) ... M®D are defined in a recursive manner as follows. M~
has n — s + 2 thick columns Mgs__ll), . ,Mgf_l). For s < i <n, define

v = s ns(vgny M),

7 i—1

and let Ml(-s) be the matrix with dim(Vi(S)) columns that are the basis vectors
of Vi(s). The pattern of partitioning the thick rows of M(®) is assumed to be the
same with the partitioning pattern of thick rows of M) for every 2 < s < n—1.

Let us define additional notations related to the rank of submatrices of M(®)

for 1 <s<n-—1 as follows.

rank(Mgs)), ifi=s
.« 5P (M) = rank([MS)...Mgs)D e
Hs+1<21<n
—rank ([Mff) . M§i)1D )

e PO (M) := rank(M®) = 75 (M)

i=s "1
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0, if i = s,
. T(M) =
i—1 (s) . .
Zj:s rank(Mw. ), ifs+1<i<n.
- 0, if i =s,
- T (M) =
rank ([ ML), s+ 1<i<n,

2.3.2 Properties of Block Matrices with Full-Rank Diagonal

Blocks

In this subsection, we consider block matrices of which the every diagonal block
has full column rank. Specifically, suppose that M satisfies the following two

conditions (i) and (ii):
(i) the columns of M; are linearly independent for every 1 <i <n
(i) rank(M;;) = rank(Mj;) for every 1 <i <n,

The following proposition states that Conditions (i) and (ii) are inherited

to M(l)’ N 7M(TL71).

Proposition 1. If M (= M()) satisfies Condition (i) and (ii), then M®) ... M®~1)

have similar properties, which are:
(i)’ the columns of Mgs) are linearly independent for every s <i < n,

(i)’ rank(M(s)) = rank(MZ(.S)) for every s <i < n.
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(s)

Proof. The first condition is straightforward, since the columns of M, are the
basis of Vi(s). Since rank(MZ(-i-)) < rank(Mgs)), in order to derive the second con-
dition, we need to show rank(MZ(-:?) > rank(MEs)). We will show this by induc-
tion. Assume rank(Mgifl)) = rank(MEsil)) holds for some 2 < s <n—1. Sup-
pose that the basis of S(Mgs)) is extended to the basis of S(Mgsil)) by adding
additional dim(S(MZ(S*l))) — dim(S(MES))) linearly independent columns. Let
us focus on the part of these dim(S(MZ(S*l))) — dim(S(MES))) columns that cor-
respond to the position of the ith thick row. We can observe that the subspace
spanned by these dim(S(MZ(-S_l))) —dim(S(MEs))) (small) columns and S(Mg‘?)

(s-1)

is exactly the same as S(M;; ). This implies

rank(Ml(-i._l)) < rank(M(s)) + rank(M(S_l)) - rank(MZ(-s)).

Since we assumed that rank(M(S_l)) = rank(Mgs_l)) holds, this leads to rank(Mz(-i»)) >

rank(M.™). O
In addition, we introduce the following propositions.
Proposition 2. For 1 <s<n—2and s+1<i<n,
51 (M) = rank(M?)) — rank(M(;™V), (2.84)

7 ) < 7 (V) — 7Y (). (2.85)

1 [, ] &1 —
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Proof. We can obtain (2.84) as

5% (M)

rank ([M@ . MES)D

~dim (5 (MM, ) s (M) (2.86)
*) — rank (MESH))

1782' — rank (ME;H)) (2.87)

where (2.86) holds since for any two subspace U and V/,

dim(U & V) = dim(U) + dim(V) — dim(U N V). (2.88)

Equation (2.85) can also be derived by using (2.88). The case of i = s+ 1 is

trivial since TS(

* (M)

= Ts(i)l(M) and Ts(i?)(l\/[) = 0. For s+ 2 < i <mn, using
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the definition of TZ-(S)(M), we have

7 (M) = rank( Mz(ss) MESZ)_ID
o) i

|
|

~dim (5 (M- ML s (ML) (2.89)
M

rank< (S).'-MEZ) ZD + rank(M ( ) 1)

IN

—rank(M 5Ty (2.90)

i,0—1

rank ([M(S) . ~M§?_3D

1,8

IN

+rank(Mz(-7Si)_2) - rank(Mgitg))

+rank(M{) ;) — rank(M{5)) (2.91)

IN

rank (Mf‘?)

+ Z (rank rank(M(SH))) (2.92)
Jj=s+1

= T, (M) - TJS*”(M)

)

)

where (2.89) follows from (2.88) with U = S ([ME?ME?_J) and V =

s (Ml

i,0—1

) and (2.90) holds since each vector in S (Mz(‘ill)) must be contained

in both S ([MZ(SS) . MZ(?_QD and S ( M) ) We can obtain (2.91) and (2.92)

1,0—1

by repeating the similar steps done in (2.89)-(2.90) recursively. O

As discussed at the beginning of this section, the goal we want to achieve
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is to find a tight lower bound of rank(M), since we are going to use H,epair
for M. The following lemma deals with lower bounds of rank(M). We will use
Lemma 2 to derive the lower bound of rank(Hy¢pair) for 2 < s < g in the next
section. Note that the following theorem is extended from Theorem 3.3 of [23]

(See Remark 5).

Lemma 2. Suppose a block matrix M with n? submatrices satisfies the fol-

lowing Condition (i) and (ii),

(i) For any ¢ € [n], the thick column M; has linearly independent columns.

(i) rank(M; ;) = rank(M,;) for every i € [n].

then, for any positive integer s > 1, rank(M) is lower bounded by

s(s+1)
2

(2.93)

rank(M) > Zmax ( s — i+ 1)rank(M; ;), srank(M; ;) — T.(l)(M)) .
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Proof. For 1 < s <n—1, by using (2.84), we have
5 (M) = rank(M{)
= rank(M{; V) — 64D (M)

= rank(M{;?) - 602 (M) — 5D (M)

= rank(M{)) - > ¥ (M). (2.94)

{900 s (o 2 o (2345
— rank ([M() : -M(S.)D — 7 (M)
> rank (M(S)) — 7O v
( ) =3 69 (v — 7 (m). (2.95)

By collecting every 6;8) (M) terms on the left hand side of (2.94) and (2.95), we

(J)(

can derive the lower bounds of > % i=10;

M) for s <i < n as

s ) rank(Mg}g) if i = s,
> o () > (2.96)
j=1

rank(Mg}i)) - T}(S)(M) ifts+1<i<n.
For the next step, we will find the lower bounds of me(Z s —q+ 1)5£q)(M)

for 1 <i <n by using (2.96). If i =1,

min(%,s)

3 (s — g+ 1)a? (M) = 581" (M) = srank(M{). (2.97)

q=1
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For 2 <i <s,

q=1 q=1 j=1
i—1 q
> (s —i+ Drank(M)) + Y36 (m (2.98)
q=1 j=1
1—1
> (s—i+1)rank( M( ) )+ Z (rank Ti(Q)(M)> (2.99)
q=1
> srank(M ZT(q)
> srank(M;}) - T}”(M), (2.100)
and for s +1<1¢<mn,
min(z,s) s
Y (s—g+18M) = (s —q+1)8” (M)
q=1 q=1
= Y N 6P (2.101)
q=1 j=1
> srank(M}) TOM)  (2.102)
q=1
> srank(MLY) — TV (M), (2.103)

where (2.99) and (2.102) follow from (2.96), and (2.100) and (2.103) follow from
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< 1Y(m)
for 1 <i<s, and
S B ~ s—1
ST = TEOM) 3 (1) - T ()
q=1 q=1

< 1(M).

for s+ 1 < ¢ < n, Since 51-(5) (M) is always positive for every s and i, we have

miiivs)( D) (s —i+Lrank(MLY), if2<i<s
a=1 0, ifs+1<i<n.
(2.104)

from (2.101) and (2.98).

By combining (2.97), (2.100), (2.103) and (2.104), we have

i=1 g=1
> Z max (0, (s—i+ 1)rank(M§}i)), srank(M(J)) — Ti(l)(M)) (2.105)
1=1
Since M(®) originates from M®~D  we have p(M)(M) > p@ (M) > >
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p"~1(M). By using this, we note that the left hand side of (2.105) is up-

per bounded by

n  min(i,s) s n
SN g+ = Ys—q+1)Y 87
i=1 gq=1 q=1 i=q
= > (s—gq+1)pl? (M)
q=1
< Do), (2.106)

and hence we complete the derivation of (2.93) for the case of 1 < s <n — 1.
When s > n, we prove (2.93) by induction. Suppose that (2.93) holds for
some s > n — 1. By adding the term (s + 1)rank(M) to both sides, (2.93) for

s+ 1 also holds as
(s+1)(s+2) .
2

> zn: max <(s — i + 1)rank(M,), srank(M,_;) — T.(”(M)) + (s + 1)rank(M)

%
i=1

ank(M)

>3 max <(3 — i+ 1)rank(M;), srank(M,_;) — T}”(M))
=1

+) " rank(M;,;) (2.107)
> Zn: max ((s — i + 2)rank(M.), (s + 1)rank(M,_;) — T.(l)(M)) :
=1

where (2.107) follows from the fact that

Zrank i) < nrank(M) < (s + 1)rank(M).

¥ [ 11 =1
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Since we have already proved the case of s = n — 1, we can verify that (2.93)
holds for every s > n in a recursive manner.

O

Remark 5. Lemma 2 is an extension of Theorem 3.3 of [23]. The difference
from [23] is the existence of the max(-) operation. Theorem 3.3 of [23] is equiv-

alent to

n

s(s+1)
5 rank(M) > ; (srank(M; ;) — T5)
n n -1
=5 Z rank(Mm)—Z Z rank(M; ;)
i=1 =2 j=1

instead of (2.93).

In addition, we introduce another lower bound of rank(M) which will do an

important role in Chapter 3.

Lemma 3. Assume a block matrix M with n? submatrices which satisfies

Condition (i) and (ii),
(i) For any ¢ € [n], the thick column M; has linearly independent columns.

(i) rank(M; ;) = rank(M,;) for every i € [n].
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For any positive integer 1 < s < n — 1, rank(M) is lower bounded by

srank(M)

3 rank(My,) — ZT}S)(M)
=1 ]
+ max (0 (s — 1)rank(M ZT“ ) . (2.108)

Proof. At first, we derive a lower bound of 377_ p9). p(®) (M) is lower bounded

3

> zn:{rank( ) Zéf“ —T® (M )} (2.109)
s—1 n

= Zrank( ) 2251(3) Zjﬁi(S)(M)

7j=1 i=s

= {Zrank( > szfrank( )} ZT(S
- Z {ié@(M) - i@“’(M)}

Ss—

= Zrank( ) ZTS) 1P(j)(M)
1

j:

Z{ra”k< ) Zz:(” } (2.110)

S—

1
= Zrank( ) ZTS) pY) (M) (2.111)
1

j=

where (2.109) follows from (2.94) and (2.95), (2.110) holds because of the fact
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that

s—1s—1 s—1 1
50) — 50,

and (2.111) follows from (2.96). By moving the last term of the right side, we

have

s

LR zn: rank (M) - Zn:ﬂ(s)(M)‘ (2.112)
i=1 i=s

=1

Next, the quantity p( (M) — p*+D (M) is lower bounded by,

p(")(M) — p(i-‘rl) (M) — rank(M(l)) _ rank(M(i+1))

= 69 M) (2.114)

for 1 <i < s—1, where (2.113) holds since

for every i +1 < j < n. By using (2.112) and (2.114), we have
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srank(M) = sp(M)

(2.115)

v v
- 1 L
s S
= =
/—\ /—\
= =
M M
'ﬂ 'ﬂ
+ +
- M
=
2
=
32
~

79*1)) (2.116)

v
o
>
=

A
\_/
'ﬂ

+
E
)

B
~/
o
w
|
-
z
3C

— Z T
j=2
where (2.115) follows from (2.112) and (2.114), and (2.116) follows from (2.96).

O]

2.4 An Outer Bound of Linear and Exact-Repair Co-

operative Regenerating Codes

In this section, we derive the outer bound on the file size of linear cooperative
regenerating codes (1.3). First of all, for a given vector 1 = (l3,--- 1), if s =1,

(1.3) is reduced to

B < A Min (a,A%)

&

h
lhmin (o, (d = k+ Y 1)1 + (r = 1) B2), (2.117)
t=1

1 [
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which is equivalent to (2.78). Thus, we need to show that (1.3) holds for
2<s<g.

The proof of Theorem 1 is almost similar to the proof of (1.1) in Section
2.2. After constructing H,epqir that satisfies S (HZ;paiT) C S(HT), we convert

the lower bound of rank(H,¢pair) to an upper bound of B.

2.4.1 Construction of H, 4,

For a given arbitrary vector 1 = (ly,---,ly) which satisfies 1 < I, < r and
Z:l I, = k = d, construct H,¢pqir in a similar way as in Section 2.2.1. The
only difference is that N, must be chosen under stricter conditions. For 1 <

h < g, Ny, is defined as

h—1
Ny = argmax » I[H;=0], (2.118)
NuCIX P 1], 1=0

|Np|=r—1,

where I]-] denotes the indicator function, which has 1 as its value if the state-
ment inside brackets is true, and has value of 0, otherwise. Thus, the ele-
ments of V;, must be selected to maximize the number of zero matrices out of
Hpo, -, Hpp1-

For example, Ny, -, Ny of Hyepair described in Figure 2.2 satisfy (2.118).
For h = 1, there is no N}, that makes Hj o a zero matrix. For the cases of h = 2
and h = 3, Hy1 = 0 and H3; = 0, since 7 € Ny and 7 € N3. We chose N, to

satisfy {7,8,9} C Ny in order to make Hy o and Hy 3 zero matrices.
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2.4.2 Lower Bound of rank(H,pqir)

For a given vector 1, H¢pqir has (9 + 1)2 submatrices. We use Lemma 2 to
derive the lower bound of rank(Hyepair) for 2 < s < g. Note that the Lemma 2
is extended from Theorem 3.3 of [23] (See Remark 5).

As discussed in (2.43), g + 1 diagonal submatrices Ho o, Hi 1, - ,Hy 4 are
identity matrices. Thus, Hyepqir satisfies Conditions (i) and (i) of Lemma
2, and can be used for the matrix M in Lemma 2. The lower bound of

rank(H,cpqir) derived by using (2.93) for 2 < s < g is expressed as

1
S(S;_)rank(Hrepair)

g
> s(n—k)a+ Z max (0, (s — h)lpa, slha — Ty),  (2.119)

h=1

where

h—1
Ty =) _ rank(Hp,y). (2.120)

t=0

For a given vector 1, the terms in the right hand side of (2.119) are fixed except
for the term T},. Thus, minimizing T} is important for tighter lower bound.
For 1 <h<g, [Hpo -~ Hypp1] = AR
<h<g, [Hpo hh—1] RS

a x o components. It is important to note that some part of [Hy g --- Hp p—1],

] has I, fo;ol Iy numbers of

R . . . . R . .
ARfLN is a zero matrix, since entries of A"  are contained in the lower
h*Vh hiVh

triangular entries of I, (see Remark 4).

As shown in (2.51)-(2.52), if j € [Z?:_ol lt} \ Rp, Aj; is then the sum of two

> 1 3
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components P;j and T;j, as
Ay = P;j + T;j (2.121)
= P;; + Z Tijm | + Z Tijm (2.122)
meR, \{i} meR\R),
For the case of j € IV}, where A;; is a zero matrix, if we define A;; = P;j =

T;j = 0, then A;; = P;j + T;j holds for every case of j € [Z?:_ol lt]. For

0<t<h-—1, Hy, is also the sum of two components, as

.. (2.123)

/
it = P+ T,

The upper bounds of Z?;(]l rank(P'R, R,) can be derived similarly to (2.54)-(2.59)

hot
as
h—1
rank(PR,hR;) < Z rank(PR;j) (2.124)
t=0 JELp
h
< h(d=k+> )b, (2.125)
t=1
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The upper bound of Z?:_ol rank(T', ) can be derived as

R, R,
h—1 h—1
t=0 t=0
h—1
< t_orank(TR;L([”}\Rh))H[Hh’t = 0] (2.127)
= chrank(TR,h([n]\Rh)) (2.128)
= Cp Z Z rank(Ti([n]\Rh%m) (2.129)
iER;l meNy,
< cn|Ry|INwlB: (2.130)
= Chlh(T — lh)ﬁg, (2.131)
where (2.129) follows from the fact that
by, = Al. 2.132
O ST (2.132)
ZtEA ltSr_lh
h—1
= D IH; #0], (2.133)
t=0
h—1
= h—Y IH,, =0], (2.134)
t=0

and ¢, :=h—0bp for 1 <h <g.

By combining (2.125) and (2.53), for 1 < h < g, T}, = Z?:_Ol rank(Hyp, ;) is
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upper bounded by

Th

IA

h—1
Zrank(PR/hRi) + rank(TR/hRi)
=0

h

In(d =k + > 1)Br+ caln(r — 1) B2

t=1
= AL, (2.135)

IN

where A}L was defined in (1.4). By applying this to (2.119), the lower bound of

rank(Hycpqir) can be derived as

rank(H,¢pair)

2(n — k) 2
> +
- os+1 s(s+1)

g
Z lp, max (0, (s —h)a, sa — AL) . (2.136)
h=1

2.4.3 Derivation of the Proposed Outer Bound

By using the relation rank(H) = na — B, the lower bound of rank(H) can be

converted to an upper bound of B as

B = na—rank(H)

< no — rank(Hyepair)
2 2 <
< _ _ _
< v l(n k)a o} h§:1lho¢
p R .
_ E —sa, —ha, —A )
SG5+1) 2 [, max ( sa, —ha, h
s—1 2
< = > i ). ,
< ST + s+ 1) 2 [, min (sa, ha, Ah) (2.137)

¥ [ 11 =1
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Remark 6. We only defined (1.3) for the case of 2 < s < g, even if (2.93)
holds for every positive integer s > 1. In fact, we can also derive (1.3) for s =1
and s > g + 1 in the same manner described in this section, but we do not
have to use them. When s = 1, this is because the functional repair bound
(1.1) is tighter than (1.3) with s = 1. The reason why we did not consider
s > g+ 1 is that every lower bound of rank(H,¢pqir) from (2.93) for s > g+ 1 is
always smaller than the lower bound obtained for s = g, since every diagonal
submatrix of Hy¢peir is square and nonsingular.

To verify this, we will show that for a matrix M which has n? submatrices
and satisfies Conditions (i) and (ii) of Lemma 2, if M; ; is square and nonsingular
for every i € [n] , then the lower bound of rank(M) given in (2.93) decreases as
s increases when s > n. For a given i € [n], if M, ; is nonsingular, it must be

that

rank(Mj; ;) > rank(M; ;) and rank(IM; ;) > rank(M; ;)

for every j € [n] \i. (2.138)

According to (2.93), for a given s > n — 1, rank(M) is lower bounded by

8(82+1) Z (srank(M; ;) — T5) ,
i=1
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where the max operation disappeared since

(¢ — D)rank(M; ;) > Z rank(M (2.139)

which follows from (2.138). The difference between the lower bounds for s = sg

and s = sg+ 1 is

2 n
m ; (sorank(M; ;) — T;)
(80 + 1)(80 +2) Z ({50 + Lrank(Ms) — )
i=1
-2 z”: (srank(M; ;) — 2T3) . (2.140)

s(s+ 1)(s +2) &=

This value is always positive, since

Z (srank(M; ;) — 2T5)
i=1
> " ((n— Drank(M;;) — 2T;) (2.141)
i=1
n t—1
n— 1)Zrank i —QZZrank
i=1 i=2 j=1
n—1) Z rank
i=1
n -1 n—1 n
—ZZrank(M”)— rank(M; ;)
=2 j=1 j=li=j+1
>0, (2.142)
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2.5 Evaluation of the Proposed Outer Bound

In this section, we discuss the performance of the proposed outer bound of
Theorem 1 by evaluating it on the («,y)-plane for various parameters. Given
a vector 1 and an integer s, the right side of (2.137) is a function of («, f1, 52)
since A}L is a fucntion of §; and fa. For a fixed set of parameters («, 51, 52), we
can obtain the least upper bound of B by minimizing the right side of (2.137)

overl € L and 1 < s < g. As a result, we have

. s—1 2 J . 1
B < rllélél {S+1HQ+MZlhm1n (sa,ha,Ah)}

1<s<g h=1

= B(a, 1, ), (2.143)

where we defined B’(a, B1,P2) as the least upper bound of B, and L is the
set of all vectors 1 = {ly,---,l,} such that 1 < [}, < r for every h € [¢g] and
> _1ln = k. For a given value of v, by maximizing B(a, B1, B2) over 31 and [
with v = dBy + (r — 1)Ba, B(a, b1, 82) is transformed into a function of (a, )
as

B< max  B(w, B, B2). (2.144)
dp1+(r—1)B2=

In Figures 2.3 and 2.4, («, ) values satisfying

1= max  B(o, b1, 2.145
dB1+(r—1)B2=> (@ b, o) ( )

are plotted for various (n, k, d, ). The set of the points forms a piece-wise linear

curve on the («,~y)-plane.
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Figure 2.3: Performance comparison between the proposed outer bound (The-

orem 1) and the cutset bound (1.1) for different values of » when n = 14 and

d=k=n—r.
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(n.k.d,r) = (12, 10, 10, 2) (n.k.d,r) = (10, 8, 8, 2)

= = Functional 0.22 = = Functional
0.18 m— Proposed ’ m— Proposed
X MBCR and MSCR X MBCR and MSCR
0.16
< 0.14
0.12
0.1
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(n,k.d,r)=(8,6,6, 2) (nkd,r)=(6,4,4,2)
= = Functional 0.4 = = Functional
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Figure 2.4: Performance comparison between the proposed outer bound (The-
orem 1) and the cutset bound (1.1) for different values of k when r = 2 and

d=k=n-—r.
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Figure 2.5: Performance comparison between the proposed outer bound (The-
orem 1) and the cutset bound (1.1) for different values of d when r = 2 and

k = 10.
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In Figure 2.3 we plot the performance of the bounds for different r» when
n =k +r = 14. The («,~) points in the region above the cutset bound and
under the proposed bound are not achievable with the exact repair model, but
achievable with the functional repair model. This region becomes smaller as r
increases. Figure 2.4 illustrates the piece-wise linear curves for different £ when
fixed r = 2, and Figure 2.5 includes the (a,7) curves for different values of d
when r = 2 and £ = 10. It is observed that for fixed r the proposed outer
bound becomes tighter as k increases and d — k decreases, compared to the
cutset bound.

To sum up, the proposed outer bound stated in Theorem 1 is effective if r
and d are small, or k is large, when compared with the functional-repair cutset
bound. This is because the lower bound of rank(H}, ;) becomes loose when it is
approximated by the sum of ranks of its a X & components. It is observed that

the lower bound becomes tighter if r is small compared to the value of n.
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Chapter 3

An Improved Outer Bound for the Case of Single

Node Repair

3.1 Symmetric Exact-Repair codes

In this chapter, we restrict our discussion to the case of single node repair where
r = 1. The proposed outer bound on the storage-bandwidth tradeoff of single-
repair codes (The cooperative regenerating codes with r = 1 are simply called
regenerating codes.), which was stated in Theorem 2 and 3, is tighter than the
r = 1 case of the first outer bound discussed in Chapter 2. This improvement
is motivated by the storage node symmetry of exact repair codes, which was
first discussed by Tian in [18].

Symmetric regenerating codes are defined to be regenerating codes that are
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invariant to index permutation. When we discuss about outer bounds on the
S-B tradeoff or conditions the regenerating codes must satisfy, it is sufficient
to consider symmetric regenerating codes, since there is no operating point
(a, 8), which can only be achieved by non-symmetric regenerating codes. Let
C be a set of codewords of an non-symmetric regenerating code operating at
(c, B). Suppose a permutation code C; where the indices of nodes (1,2,---,n)
is permuted into another order of n integers 7 [(1,2,---,n)]. Let C' be a new
code generated by space-sharing n! possible C,s with the same fraction. Then
C' can be regarded as a symmetric code operating at the same point («, 3).
Even though the size of the alphabet (e.g. finite fields) might become larger, it
is not an interested problem when we want to verify the existence of such codes.
Note that for a symmetric regenerating code, the amount of any information
measure (e.g. entropy, rank) is not dependent on the particular choice of nodes,

but only on the number of nodes.

3.2 Conditions for Parity Check Matrices of Single

Repair Codes

Lemma 4 below gives some conditions that the parity check matrix H of an

(n, k, d)-regenerating code must satisfy if the code is an (nq, B)-linear code.

11 ==
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Lemma 4 is analogous to Lemma 1 in Chapter 2.

Lemma 4. The parity check matrix H of an (n = d+1, k, d)-linear regenerating

code satisfy the following two conditions (i) and (ii).

(i) A (na — B) x (n — k)a matrix constructed by collecting arbitrary n — k

thick columns of H has full rank (n — k)a.

(ii) For an integer i € [n], there exists an @ x na matrix H; that satisfies the

following conditions (a) and (b).

(a) Each of o x a submatrices of H; satisfies

H) =1, if h =i,
(3.1)

rank(H?) < 3, if he D,

where I:Il = [I:Il1 o I:I?}
(b) S(H]) c SHT).
Proof. Consider n code symbols cq,--- , ¢, such that

c=(cicy ... cy), (3.2)
where each symbol is a row vector of length a. For A = {ay,az, -+ ,a/4}, a
subset of [n], define c4 as (cal Cay --- ca‘m), and let G 4 and Hy4 be the ma-

trices formed by combining thick columns of G and H whose indices correspond

to the elements of A.
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Condition (i) can be derived from the data collection property of regener-
ating codes. Let K be a subset of [n] with k elements and K = [n]\ K. s =0
is the unique vector satisfying sH:'[:{ = 0, since ¢ = 0 is the unique codeword
satisfying cx = 0, according to the data collection property. This means every
columns of Hjlj( are linearly independent.

Condition (ii) is derived from the node repair property. Suppose a node
repair process where d helper nodes whose indices correspond to D = [n]\{i} =
{l1,--+,l4} repair node i (¢ D). Each helper node produces /3 symbols by
combining its own « symbols and transmits them to node i. Let c;®;; be
the 3 symbols node i downloaded from node j € D, where ®;; is the o x 3
encoding matrix. Node ¢ can obtain c; by combining ¢;, ®;,4,--- ,¢;, P, and

this procedure is expressed by
d

ci = Z(Clj Dy, )Wy, (3.3)

J=1

K3 K3

where W;,;, Wy, -+, ¥;,; are B X a matrices. Define H; = [H1 H”] as

) L, if h =1,
H! = (3.4)

—UIeT  ifhe D.

H;, satisfies (3.1), since the rank of ®;;, Wy,; is less than 8. It can be shown that
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every row of H; belongs to the row space of H by verifying
n .
cHp = > cj(HI )T
j=1
d
= cla+ Z ci; (—‘I’lj;i@z;j)T
j=1

d
= Ci—g cl Qi Vi
i=1

=0 (3.5)

for any codeword c.

O]

As stated in the proof of Lemma 4, conditions (i) and (ii) are derived from
two properties of regenerating codes, data collection and node repair, respec-
tively. The following corollary can be regarded as a modification of condition

(i) of Lemma 4.

Corollary 1. Suppose an (n, k, d)-linear regenerating code, and let H be its
parity check matrix. Let K be a subset of [n], and ¢ be an element of [n] such
that |K| = k and ¢ ¢ K. For arbitrarily chosen (i, K), there exists an a X na

matrix H; ;¢ that satisfy the following conditions (a) and (b).
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(a) Each of a x o submatrices of H;  satisfies

,

H =1, if t =1,
rank(H! ;) < o, ift € K, (3.6)
IA{§ k=0, otherwise,

where IAL-’K = (I:IZIK e ﬂfK>
(b) S(ﬂ{K) c SHT).

Proof. Given a subset of [n], K = {l;,---,lx}, m can be obtained from cg

based on the data collection property. This procedure is expressed by

k
m = cht@lt7 (37)
t=1
where ©;,,---,0;, are a x B matrices. Consequently, this implies that the

symbols of ¢; can also be expressed by linear combinations of cx as

Cc;, = mGZ
k
= cht(—)ltGi‘ (38)
t=1

Define I:IZ K= (IAL1 K I:IZ" K) where the submatrices satisfy

(

I, if t =1,
Hi k=4 -GTel, ifteK, (3.9)
0, otherwise.
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It can be easily verified that H; g satisfies the condition (a). By (3.8), for every

codeword c,

k
CI:IZK = ci_zclt@ltGi
t=1
=0 (3.10)

This implies the condition (b) is also satisfied, since the row space of IA{Z', K is

orthogonal to S(G”) and belongs to S(H”). O

3.3 Construction of Hg,g.

In this section, we shall define a block matrix matrix Hg;pge which satisfies
S(Hz;ngle) - S(H)v (311)

as Hy¢pqir used in Chapter 2 satisfies

SHZL, ...) c SHT). (3.12)

repair

H;pgie is made up of the rows of the parity check matrix H of the cor-
responding regenerating codes, as H,¢pqir does. However, there is a notable
difference between Hg;pge and Hyepgir in combining direction of the rows of
H. While H,cpqr is constructed by combining the rows of H vertically as in

(2.39), Hyjngie uses the rows of H as its columns. The column space of Hgjpgle

i 1] =1
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is contained in the column space of H as (3.11), where the column space of
H, cpqir is contained in the columns space of H. More specifically, Hy;pgse is
constructed by combining o X na matrices H; and I:L i horizontally given by
Lemma 4 and Corollary 1.

Let the quotient and remainder when n (= d+1) is divided by 7 (= d+1—k)

be @ and R, respectively. i.e.,
n=d+1=Q7+ R, 0<R<T. (3.13)

In this section, ) kinds of submatrix patterns will be considered. For 1 < ¢ < @,

Let ug be a vector of length g = d — ¢(7 — 1) + 1 such that

uq:(17...,177—’...,7—>' (314)
—_—— ——
f=d—q7T+1 q

The elements of u,a can be regarded as a pattern of widths of thick columns
and rows of H;y,gc. The sum of all elements of u, always equals n. Specifically,
if ug = (w1, ,uq), na columns of Hyepqir are partitioned into g (= f +¢ =
d—q(7 —1)+1) thick columns, each of which consists of uja, - - - , ugr columns,
respectively. Let the thick rows of Hg;yge be partitioned in the same way. In

this manner, Hy;ygc is broken into g? submatrices Hii,--- ,Hyy as
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H171 H172 e Hl,g
H271 H272 . H27g

Hingle = =[H; Hy ---H, (3.15)
Hg,l Hg,2 s H97g

T
where Hp = Hrfh Hg’h H;F’h] is the hth thick column of Hgyg. for

1 < h < g. Each of the g thick columns of Hgj, 41 is defined as

HY, if1<h<f,
H), = (3.16)
H —H} if f+1<h<y,

where for f+1<h <g, H}L and H%L are defined as
H) - [A7 - BT
h h

and

2 = = P T
Hiy = " aopngg- Hfg,[d+11\{f,1,---,f,:}]
_ - T
0 0 0 0
& 1 . e .
Hfﬁ 0 0 0
x| H.. H?2 - )

Hl, H2, 0 0
HL H2, ... H! 0

| Hyy Hiyr . 0]
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where f}{ =f+@-U)r+j=d—qgr+1)+(¢g—1)7+jfor 1 <j<7. Note
that for f+1 < h < g, the two components of Hy, H,ll and H,Ql, originate from
H; and I:L x given in Lemma 4 and Corollary 1, respectively.

It can be easily verified that the every diagonal submatrices of Hgjpgie is
nonsingular by using the conditions of H; and I:IZ K stated in 4 and Corollary

1. For 1<h<f

ah T
Hppn = (Hh> =1, (3.17)
and for f+1<h <g,
- - T — - T
T2 T3 .. T
I, Hf,ﬁ Hfi Hf,ﬁ 0 0 0 0
L 3 .. & g L ..
Hfﬁ I, Hfﬁ Hf}% Hf2 0 0 0
H = L, H2 T — | gL 12
h,h Hf;’f Hfg I, Hfg Hf;j Hf}? 0 0
T a2 . 0
L h h h - L h h h -
- - T
2 T3 T
L. Hp Hp - Hp
T3 T
0 I, Hf,f Hf}%
= o o I, . H, (3.18)
h
0 0 0 I,

[ Tl == —
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Thus,

a fl1<h<f,
rank(Hhﬁ) = (319)

Ta if f+1<h<yg,

Additionally, we can verify the rank of each lower-triangular submatrix (Hj, ;

with h > t) is upper bounded by

8 if1<t<fand2<h<f,

rank(Hps) < § 78 ifl<t<fand f+1<h<g, (3.20)

R(o,B) if f+1<t<yg,

where the definition of R(«, ) is given by (1.7).
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3.4 Derivation of Two Sub-Bounds

3.4.1 Proof of Theorem 2

Assume the matrix Hypge is given for an arbirary 1 < ¢ < Q = L@J For a

given value of p, define a block matrix Py;pge with (g — p)2 submatirces as

Hitpivp Hippoyp -0 Higpy
Hyipi+p Hoppogp -0 Hagpy
Psingle =
Hy14p Hyo21p Hy,
Pi: Py Py,
Psy1 Py Poy p
L Pyp1 Pgp2 o Pypgyp |
= [Pl P2 . Pg—p]

Since p < k — (¢ — 1)7, by using (3.19) and (3.20), we have

rank(Ppp) = (3.21)

Ta if f—p4+1<h<g-—p,

80 Al =14



and

B fl<t<f—-pand2<h<f—p,

rank(Pr) < 78 fl<t<f—-pand f—p+1<h<g—p, (322

R(e,p) if f—p+1<t<g—np,

\

Since every diagonal submatrices of Pg;pg is nonsingular, we can utilize

the properties discussed in Section 2.2. Substituting P;pqe for M of Lemma

3, we have
g—p
trank(Psmgze) > Zrank ZT szngle
=1

t—1

+ max <0, (t—1)rank(Pg—p g—p)— T;Z_p single )(3.23)

=1

for 1 <t < g—p—1. The summation of (3.23) for 1 <t < s yields that

s(s+1) = =
rank(PSingle) > s Z rank(Pz i Z Z T szngle
=1 t=1 i=t
-1
+ Zmax < t - 1)rank(Pg_p’g_p) - Tg(z_p(Psingle)> )
=1
g—p D
> s(k+7—pla=) T (Psingle)
=1
s
+ Z max (0, (t — 1)7’0( - Tg(i)p(Psingle)) ) (324)

where (3.24) follows from (2.85) and (3.21). By using (3.22), S9-7 T (P gingie)

)
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and Tg(i)p are upper bounded as

g—p g—p h—1
Zﬂ(l)(Psingle) < erank(Ph,t)
=1 h=2 t=1
< k-p—(@- D=+ g+ Dr-1)3
+ 10D i, ) (3.25)
and
T (Paingie) < (4 = 1)R(0, ) +7(k =p = (4= 1)7). (3.26)

By substituting (3.25), (3.26) and using the fact that

B = na—rank(H)
< no — rank(Hgingle)

< na —rank(Pgingle), (3.27)

we can find the upper bound of B as

-1 -1
5 8(82 )ka+8pa+q(q2 )

b5k =p— (g = D7)k~ p+ g+ Dr — 1)

R(e, B)

+3 min ((t - )ra, (¢ — DR(e, B) + 7(k —p— (¢ — 1)7)B)),

t=2
(3.28)

which is equivalent to (1.6).
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3.4.2 Proof of Theorem 3

Assume that Pg;,g is constructed for ¢ = 1. Since ¢ = 1 and g = k + 1, we

have

a if1<h<k-—np,
rank(Pp 5) = (3.29)

Ta ifh=k—p+1,

and

rank(Pp¢) < 8 (3.30)

for1<t<k—-pandt <h<k—p. Forthecase of h =k—p+1, Py, is
defined as
k+1 a+1]T
Py = [HIT) - HE (3.31)
for 1 <t<k.
By substituting P gjpnge for M of Lemma 3, the lower bound of rank(P spgse)

is expressed as

k—p+1 k—p+1

trank(Pgingie) > Z rank(P; ;) — Z Ti(t)(Psmgle)
i=1 i=t
t—1 .
+ max <0, (t — 1)rank(Pk_p+1,k_p+1) - Z T]gl_)p_i_l(Psingle)) )
=1
k—p t B
> (k‘ + i — p)a - Z smgle Z T(i)p szngle (332)
i=t =1

for 1 <t < k—p. By using the relation (3.27), the lower bound of trank(P sngie)

1 [, ] &1 —
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can be converted to an upper bound of B as

k—p t
tB < ((t - l)k + p)a + Z Tz(t) (Psingle Z T]E )p+1 smgle)
i=t i=1
k—p
< ((t — 1)k + p)a + Z Tl(t) (Psingle) + T]gl_)p+1(Psingle) (3'33)
i=t
k—p
< ((t =Dk +p)at Y T (Pange) + 7k — p)B (3.34)
i=t
where (3.33) follows from (2.85).
For t =1, (3.34) is reduced to
k—p )
B < po + Z Tl(l) (Psmgle) + Tlgljp+1(Psingle)
i=1
k—p
= pa+ Y TV (Pangie) +rank (Pr_pi1n -+ Propriny]) (3.35)
i=1
k—p
= pa—+ Z 7—;(1) (Psingle)
i=1
_ ’ .
k+1 k+1
(B wenen) - (Bno)
+rank (3.36)
(Hd+1 )T (Hd+1
L 1+p,[d+1\{1+p} T k,[d+1\{k}
k—p
< pa—+ Z Tl ! (Psingle) (3'37)
i=1
T T
k+1 k41
MOEL <[<H11p [d+1}\{1+p}> (B ) D (3.38)
< pa+ (k + 1) Z T szngle (339)

where (3.38) and (3.39) follow from the property of symmetric regenerating
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codes. The summation of (3.34) for 2 < ¢t < s yiels that

s k—p
+ Z Z 112 S'Lngle (3-40)
t=2 i=t
Since
k—p 0 s k—p s k—p
Zﬂ( )(Psingle + T'@ szngle = ZZTZ szngle
=1 t=2 i=t t=1 i=t
< ZT;(I szngle (341)
1
< Sk-p)(k-p-1)5(3.42)

where (3.41) follows from (2.85), by adding (3.39) and (kfpil + 1) times of

(3.40), we have

((S(S;U —1> 1{;_2;_1“) +1>B

IA

=1 t=2 i=t

27 (s—l
— 41 -1)
i1 ) (P o))

(I{:_QT_I + 1> <(s — D7k —p) + 5(/@ —p)(k—p+ 1)) B,

217 k—p s k—p
(=) (ZE ) + 303, 7 ,>

IA
+

(3.43)

which is equivalent to (1.8).
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3.5 Performance Evaluation

In this section, we provide a few examples to illustrate how the new outer
bounds are tight compared to the other existing outer bounds and the cutset
bound (1.2). In Figure 3.1 and 3.2, we have plotted the performance of the
proposed outer bounds for different £ when n = 11 and d = 10, together with
the cutset bound and two other existing outer bounds [20,35]. In Figure 3.1,
the tradeoff curves are illustrated on the o —~y plane for the case of k = 4,5,6, 7.
The sub-bound 2 (Theorem 3) performs better than the other ones, while in
small region near the MSR points it is worse than the outer bound proposed
in [20]. On the other hands, In Figure 3.2, we can find that the performance of
sub-bound 1 (stated in Theorem 2) becomes better as k gets larger.

In order to check their difference clearer, we provide Figure 3.3 and 3.4,
where the cases of extremely low and high rates are described. In Figure 3.3,
the examples of extremely high rates is illustrated. As k/n goes to 1 with
fixed 7 = n — k = 3, the sub-bound 1 in Theorem 2 and the existing inner
bound [24] converge to the same point. In addition, the convergence point of
the two curves is definitely located far away from the functional repair S-B
tradeoff. This shows the existence of performance difference between the exact
and functional repair model. In Figure 3.4, the examples of extremely low rates

is illustrated. For a given k = 10, as n gets larger, the sub-bound 2 stated in
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Theorem 3 looks converging to the space-sharing line, which is the trivial inner
bound.

To summarize, in high rates where k/n = 1, the sub-bound 1 is superior
than others, and in low rates when k is much smaller than n, the sub-bound 2
is tighter than other bounds. In the both of the extreme low and high rates,

each bound gets closer to the optimal S-B tradeoff.
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Figure 3.1: Comparison of functional-repair storage-bandwidth tradeoff (1.2),

the outer bounds of [20,35], and the proposed outer bounds for various (n, k, d)

values. Given fixed n=d+1=12, k =4,5,6, and 7 is used.
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89



(n.k,d) = (30, 27, 29)

Functional
~ Sasidharan
—— Tandon
= = Sub-bound1
=== Sub-bound2
—— Layered (inner bound)
X MSR and MBR

0.04

0.045

0.05 0.055
4

(n.k.d) = (100, 97, 99)

0.06 0065

(n.k.d) = (20, 17, 19) 103
0.02 T
* Functional 12
~ Sasidharan
——— Tandon "r
= = Sub-bound1 16
3 = === Sub-bound2
0.015 “ —— Layered (inner bound) 9
\ X MSR and MBR
8t
6
0.01
5
4
3
0.005 2
0.06 0.07 0.08 0.09 01
(43
«10°3 (n.k,d) = (50, 47, 49) s
35 ¢
4 Functional
~ Sasidharan
6f —— Tandon 1 3r
= = Sub-bound1
B === Sub-bound2 -
5 ¥ —— Layered (inner bound) | | .
‘I X MSR and MBR
a4t f)
3
2
1

Functional
~ Sasidharan
——— Tandon
= = Sub-bound1
=== Sub-bound2
—— Layered (inner bound)
X MSR and MBR

0.025 0.03

o

0.035 0.04

0.01

0012

0014 0.016

(e}

0018 0.02

Figure 3.3: Comparison of several bounds on the exact-repair S-B tradeoff in

extremely high rates. Given fixed n — k = 3, n = 20, 30,50, and 100 is used.
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Chapter 4

Conclusion

e We proposed an outer bound on the storage-bandwidth tradeoff of linear
exact-repair cooperative regenerating codes. The proposed bound is a
generalization of the d = k =n — 1 case (i.e., r = 1) proposed in [23]. In
addition, we proposed the conditions that the parity check matrix H of
a linear code must satisfy if the code is a cooperative regenerating code.
Although the proposed outer bound is not always effective in arbitrary
(n, k,d,r) when compared with the cutset bound (1.1), it becomes more

effective as k increases, or r and d — k decrease.

e The second contribution is to propose a new outer bound on the S-B
tradeoff of exact-repair linear regenerating codes, where we assumed the

case of single repair (r = 1). The proposed outer bound for single-repair

11 ==
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codes consists of two sub-bounds. The two sub-bounds have different
tendency according to the code rate k/n. One sub-bound is more effective
in high rates (k/n > 1), but the other sub-bound becomes tighter when
the code rate is low (k/n < %) The proposed outer bound asymptotically
gets closer to the optimal S-B tradeoff at extreme high or low rates, since
the sub-bound 1 becomes closer to the existing inner bound proposed
in [24] at extremely high rates and the sub-bound 2 becomes closer to the

space-sharing inner bounds at extremely low rates.
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