

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Ph.D. DISSERTATION

Outer Bounds on the Storage-Bandwidth
Tradeoff of Linear Exact-Repair

Regenerating Codes

선형 동일 복구 재생 부호의 저장량과 통신량 간 상충
관계의 외부 경계에 관한 연구

Hyuk Lee

August 2017

Department of Electrical Engineering and Computer Science
College of Engineering

Seoul National University

Ph.D. DISSERTATION

Outer Bounds on the Storage-Bandwidth
Tradeoff of Linear Exact-Repair

Regenerating Codes

선형 동일 복구 재생 부호의 저장량과 통신량 간 상충
관계의 외부 경계에 관한 연구

Hyuk Lee

August 2017

Department of Electrical Engineering and Computer Science
College of Engineering

Seoul National University

Outer Bounds on the Storage-Bandwidth
Tradeoff of Linear Exact-Repair

Regenerating Codes

Advisor: Jungwoo Lee

Presented to the Graduate School of Seoul National University
in Partial Fulfillment of the Requirements for

The Degree of Doctor of Philosophy
May 2017

by

Hyuk Lee
Department of Electrical Engineering and Computer Science

College of Engineering
Seoul National University

This dissertation is approved for
The Degree of Doctor of Philosophy

June 2017

Chairman
Vice chairman
Member
Member
Member

Outer Bounds on the Storage-Bandwidth
Tradeoff of Linear Exact-Repair

Regenerating Codes

선형 동일 복구 재생 부호의 저장량과 통신량 간 상충
관계의 외부 경계에 관한 연구

지도교수 이 정 우

이 논문을 공학박사 학위논문으로 제출함

2017년 5월

서울대학교 대학원

전기·컴퓨터 공학부

이 혁

이혁의 공학박사 학위 논문을 인준함

2017년 6월

위 원 장:
부위원장:
위 원:
위 원:
위 원:

Abstract

Distributed storage systems disperse data to a large number of storage nodes

connected in a network. When some of the storage nodes fail, a storage system

should be able to repair them by downloading data from other surviving nodes.

The amount of data traffic during the repair, called repair bandwidth, is one of

the important performance metrics of distributed storage systems. Cooperative

regenerating codes are a class of recently developed erasure codes which are

optimal in terms of minimizing the repair bandwidth. An (n, k, d, r)-cooperative

regenerating code has n storage nodes, where k arbitrary nodes are enough to

reconstruct the original data, and r failed nodes can be repaired cooperatively

with the help of d arbitrary surviving nodes.

In the regenerating-code framework, there exists a tradeoff between the

storage capacity of each node α and the repair bandwidth γ. The tradeoff of

functional repair codes are fully characterized by Shum et al, but the problem

of specifying the optimal storage-bandwidth tradeoff of the exact repair codes

remains open. In this dissertation, two outer bounds on the storage-bandwidth

tradeoff under the exact repair model are proposed. The outer bounds suggest

the (α, γ) pairs that no exact repair codes can achieve but only functional repair

i

codes can.

The first outer bound considers general set of parameters (n, k, d, r). This

result can be regarded as a generalization of the outer bound proposed by

Prakash et al., which specifies the optimal tradeoff of exact-repair regenerating

codes for the case of d = k = n− 1 and r = 1. It is verified that the proposed

outer bound becomes more effective when k is large, r is small, or d (≥ k) is

close to k.

The second outer bound is developed for the case of single node repair

(r = 1). The bound is union of two independently derived sub-bounds. Each

sub-bound has its own condition to be tighter than the other. One sub-bound

can be regarded as an extension of the first outer bound for r = 1, and becomes

more effective in high rates (k/n > 1
2). The other sub-bound is derived based on

the symmetric property of the storage nodes, and is tight in low rates (k/n < 1
2).

keywords: regenerating codes, cooperative regenerating codes, repair band-

width, exact repair model, distributed storage systems

student number: 2013-30256

ii

Contents

Abstract i

Contents iii

List of Figures vi

1 Introduction 1

1.1 The Family of Regenerating Codes 2

1.2 The Exact Repair Model . 5

1.3 Existing Results on the S-B Tradeoff of Exact Repair Codes . . . 7

1.4 Main Contribution . 10

2 An Outer Bound on the Storage-Bandwidth Tradeoff of Coop-

erative Regenerating Codes 14

2.1 Conditions for Parity Check Matrices of Linear Cooperative Re-

generating Codes . 14

iii

2.1.1 Proof of Lemma 1 . 24

2.2 An Alternative Proof of Functional Repair Cutset Bound 28

2.2.1 Construction of Hrepair 30

2.2.2 Lower Bounds of rank(Hrepair) 35

2.2.3 Upper Bounds of B . 39

2.3 Block Matrices with Full-Rank Diagonal Blocks 39

2.3.1 Definitions . 41

2.3.2 Properties of Block Matrices with Full-Rank Diagonal

Blocks . 43

2.4 An Outer Bound of Linear and Exact-Repair Cooperative Re-

generating Codes . 55

2.4.1 Construction of Hrepair 56

2.4.2 Lower Bound of rank(Hrepair) 57

2.4.3 Derivation of the Proposed Outer Bound 60

2.5 Evaluation of the Proposed Outer Bound 63

3 An Improved Outer Bound for the Case of Single Node Repair 69

3.1 Symmetric Exact-Repair codes 69

3.2 Conditions for Parity Check Matrices of Single Repair Codes . . 70

3.3 Construction of Hsingle . 75

3.4 Derivation of Two Sub-Bounds 80

iv

3.4.1 Proof of Theorem 2 . 80

3.4.2 Proof of Theorem 3 . 83

3.5 Performance Evaluation . 86

4 Conclusion 93

Bibilography 95

Abstract (In Korean) 102

Acknowledgements (In Korean) 104

v

List of Figures

1.1 The storage α vs. bandwidth γ tradeoff of (n, k, d, r) = (8, 6, 4, 2)-

cooperative regenerating code. 8

2.1 An example of node repair process of (4, 2, 2, 2)-cooperative re-

generating codes with (α, β1, β2) = (2, 1, 1). This example is

borrowed from [7]. 19

2.2 An example of construction of Hrepair. The code parameters

(n, k, d, r) = (13, 7, 8, 5) and l∗ = (l0, l1, l2, l3, l4) = (6, 1, 2, 3, 1)

are used. 33

2.3 Performance comparison between the proposed outer bound (The-

orem 1) and the cutset bound (1.1) for different values of r when

n = 14 and d = k = n− r. 64

vi

2.4 Performance comparison between the proposed outer bound (The-

orem 1) and the cutset bound (1.1) for different values of k when

r = 2 and d = k = n− r. 65

2.5 Performance comparison between the proposed outer bound (The-

orem 1) and the cutset bound (1.1) for different values of d when

r = 2 and k = 10. 66

3.1 Comparison of functional-repair storage-bandwidth tradeoff (1.2),

the outer bounds of [20, 35], and the proposed outer bounds for

various (n, k, d) values. Given fixed n = d + 1 = 12, k = 4, 5, 6,

and 7 is used. 88

3.2 Comparison of functional-repair storage-bandwidth tradeoff (1.2),

the outer bounds of [20, 35], and the proposed outer bounds for

various (n, k, d) values. Given fixed n = d+ 1 = 12, k = 8, 9, 10,

and 11 is used. 89

3.3 Comparison of several bounds on the exact-repair S-B tradeoff

in extremely high rates. Given fixed n − k = 3, n = 20, 30, 50,

and 100 is used. 90

3.4 Comparison of several bounds on the exact-repair S-B tradeoff

in extremely low rates. Given fixed k = 10, n = 20, 30, 50, and

100 is used. 91

vii

Chapter 1

Introduction

In distributed storage systems (DSS), a data file is encoded into multiple frag-

ments, and dispersed across a number of multiple storage nodes that are con-

nected in a network. Failure of storage nodes can occur frequently in large-scale

storage systems, due to the large number of storage nodes and unreliability of

data disks. Redundancy must be introduced, in order to protect original data

against node failures. Erasure codes are known as an efficient coding scheme

for distributed storage, in that maximum reliability can be achieved for a given

amount of storage overhead. In practice, Reed-Solomon (RS) codes, which are a

kind of erasure codes, have been employed by several storage systems, including

Facebook [1], Windows Azure Storage [2] and Hadoop Distributed File System

(HDFS) [32], because of their high storage efficiency.

1

When a node fails, a new node (newcomer) that replaces it is generated by

downloading information symbols from surviving nodes (helpers). The amount

of data transmitted to repair a failed node is called repair bandwidth, and is an

important performance metric to measure the network efficiency of distributed

storage systems. Even though conventional erasure codes are beneficial in terms

of storage efficiency, they have considerable disadvantage in network efficiency

since they requires large repair bandwidth. In a naive repair scheme, the repair

bandwidth of (n, k)-erasure codes is equal to the amount of information stored

in k nodes, since the whole data file is required to be reconstructed even for

the repair of a single failed node. Motivated by this problem, various codes

for distributed storages with their own efficient repair scheme such as locally

repairable codes [25–27], and repair-efficient RS codes [28, 29] have been intro-

duced recently. In this dissertation, we focus on Regenerating codes that are a

kind of erasure codes optimized in terms of minimizing repair bandwidth [3].

1.1 The Family of Regenerating Codes

Regenerating codes with the parameters of (n, k, d) consist of n storage nodes

that store α data symbols each, and satisfy following two properties.

- Data collection: A data collector can obtain the original data of size B

by downloading α symbols from each of k (< n) arbitrary nodes.

2

- Node repair : A newcomer node replacing a failed node can be generated

by downloading β (≤ α) symbols from each of d (≥ k) arbitrary surviving

nodes.

Note that the node repair process of regenerating codes is designed to be

performed for a single node failure. However in large-scale storage systems,

multiple nodes can fail at the same time. In order to recover r node failures by

a regenerating code, rdβ symbols should be transmitted across the network. It

is known that if the cooperation of multiple newcomers is allowed, the repair

of multiple nodes can be performed with a total repair bandwidth smaller than

rdβ. Cooperative repairing implies that the exchange of a certain amount of

information between multiple newcomers is allowed. The idea of cooperative

repair is proposed in [4] only for the case of d = n − r and generalized to

have arbitrary d in [5]. In [6], the optimal storage-bandwidth (S-B) tradeoff

of cooperative repair is derived, and the codes that achieve the tradeoff are

called cooperative regenerating codes. If the number of simultaneously recovered

node failures is r, two properties of (n, k, d, r)-cooperative regenerating codes

comprising n nodes are as follows.

- Data collection: A data collector can obtain the original data of size B

by downloading α symbols from each of k (< n) arbitrary nodes.

3

- Cooperative node repair : r newcomers can be generated through two

phases. In Phase 1, each newcomer downloads β1 (≤ α) symbols from

each of d (≥ k) arbitrary surviving nodes. In Phase 2, each newcomer

downloads β2 (≤ dβ1) symbols from each of the other r − 1 newcomers.

In this case, repair bandwidth per one failed node γ equals dβ1 + (r− 1)β2.

Note that kα ≥ B, dβ1 ≥ β2, and γ ≥ α hold due to the information flow in the

data collection and the node repair processes, and the reason why d ≥ k holds

is that d < k is contradictory since d nodes are enough for a data collector to

obtain the original data file of size B by repairing k − d nodes due to the node

repair property. The maximum size of an original data file B that can be stored

in a system using cooperative regenerating codes is determined by parameters

α, β1, and β2 [6], and is expressed as

B ≤
g∑

h=1

lh min

(
α,

(
d−

h−1∑
t=1

lt

)
β1 + (r − lh)β2

)
, (1.1)

where l = (l1, ..., lg) is an arbitrary vector such that each of its elements is an

integer from 1 to r, and the sum of all elements is
∑g

h=1 lh = k. Equation (1.1)

is usually called the cutset bound, since it originated from the network coding

results. In [7], the set of (α, γ) pairs satisfying (1.1) with equality is derived

in a closed-form expression, and this forms the storage-bandwidth tradeoff of

cooperative regenerating codes. There are two extreme points on the tradeoff

4

curve that correspond to minimum values of α and γ, respectively. These

two extreme points are called the minimum storage cooperative regenerating

(MSCR) points and the minimum bandwidth cooperative regenerating (MBCR)

points, respectively, and the points between them are called the interior points.

Cooperative regenerating codes are the generalized version of regenerating

codes, and reduced to regenerating codes when r = 1. By substituting r =

1, β1 = β, and β2 = 0, (1.1) can be converted to

B ≤
k∑

i=1

min(α, (d− i+ 1)β). (1.2)

In the case of r = 1, the two extreme points are usually called the minimum

storage regenerating (MSR) points and the minimum bandwidth regenerating

(MBR) points, respectively.

1.2 The Exact Repair Model

The storage-bandwidth tradeoff of cooperative regenerating codes given by (1.1)

assumes the functional repair model. In the functional repair model, informa-

tion symbols of failed nodes are allowed to be replaced by different symbols if

the newly formed n nodes including the newcomers can operate the function-

alities of cooperative regenerating codes. However, the functional repair model

is not usually employed for practical reasons. Firstly, huge network overhead is

5

incurred since encoding and decoding rules should be updated every time the

node repair occurs. Secondly, under the functional repair model, a systematic

form of codes cannot be maintained. To solve these problems, the symbols of

newcomer nodes need to be regenerated to be the exact replica of failed nodes,

and this repair model is called the exact repair model.

Existing explicit designs of regenerating codes usually assume the exact

repair model, and most of them are constructed at two extreme points, the

MSCR and the MBCR points. For the case of single node repair (r = 1), con-

structions of exact-repair regenerating codes in two extreme points are shown

to be possible in general (n, k, d) parameters. Explicit construction of exact

repair codes in the MSR points considered in [8–10, 33] and the construction

of the MBR codes is introduced in [9] and [11]. In the case of cooperative

repairing (r ≥ 2), the design method for the exact-repair MSCR codes with

d = k [12] and k = 2, d ≥ k [13] were proposed. In [14], it was proved that

construction of the exact MSCR codes with r = 2 is possible for general (n, k, d)

parameters, by showing that (n, k, d, 1)-MSR codes can always be converted to

(n, k, d − 1, 2)-MSCR codes, and vice versa. (In the functional repair case, it

was proved that the node repair properties of (n, k, d− r + 1, r)-MSCR points

for 1 ≤ r ≤ d − k + 1 can be satisfied with the same code construction. the

parameter r can be chosen opportunistically depending on the number of avail-

6

able helper nodes. The interested reader is referred to [30,31].) Shum et al. [15]

first designed the exact-repair MBCR codes in the case of n = d+r, d = k, and

it was generalized to n = d + r, d ≤ k case in [16]. Wang et al. [17] proposed

the design method for the exact MBCR codes for general (n, k, d, r).

1.3 Existing Results on the S-B Tradeoff of Exact

Repair Codes

The size of the original file B stored in exact-repair regenerating codes also

satisfies the upper bound given in (1.1), because exact-repair codes are also a

kind of functional-repair codes. As stated in the previous section, at the two

extreme points, the MSCR and MBCR points, exact-repair cooperative regen-

erating codes can be built, and the condition of exact repair does not impose

any penalty (except for the MSCR points with r ≥ 3). However, in interior

points, it is known that cooperative regenerating codes with (α, γ) parameters

satisfying (1.1) with equality cannot be constructed with the exact repair model

in general. The problem of specifying the storage-bandwidth tradeoff of exact-

repair regenerating codes remains open except for the cases of two extreme

points.

An example of the storage-bandwidth tradeoff curve is illustrated in Figure

7

0.26 0.28 0.3 0.32

α

0.32

0.34

0.36

0.38

0.4

0.42

0.44

γ

(n,k,d,r) = (8, 4, 6, 2)

Functional

Space sharing

Figure 1.1: The storage α vs. bandwidth γ tradeoff of (n, k, d, r) = (8, 6, 4, 2)-

cooperative regenerating code.

8

1.1. The curve with the blue and solid line is the set of (α, γ) points satisfying

(1.1) with equality. Since any exact repair code is also a functional repair code,

the curve can be viewed as an outer bound on the S-B tradeoff of the exact-

repair codes. If an (α, γ) is below an outer bound, it is impossible to construct a

regenerating code operating at the pair of (α, β). The curve with red and dashed

line is usually called the space-sharing line, which is a line segment connecting

the MSCR and MBCR points. A regenerating code operating at a point on

the space-sharing line can be simply obtained by space-sharing scheme where

an MSCR code is used in a fraction of original file and the remaining fraction

is encoded by an MBCR code. The space-sharing line is an inner bound on

the S-B tradeoff of exact repair codes. The optimal S-B tradeoff curve of exact

repair regenerating codes must locate in between two curves.

In the case of single repair (r = 1), several works regarding the inner and

outer bound on the S-B tradeoff of exact-repair regenerating codes have recently

been reported. In [11], it was shown that interior points of the cutset bound

(1.1) are impossible to achieve with exact-repair regenerating codes, except for

a small region close to the MSR points. Tian derived the optimal S-B tradeoff

of exact-repair regenerating codes in the case (n, k, d) = (4, 3, 3) [18] by using

the computer-aided proof (CAP) approach [36], and also extended this to the

(5, 4, 4) case [19]. It means the functional repair tradeoff (1.1) is not even

9

achievable asymptotically with any exact repair codes.

Recently, in [20–23, 34, 35, 37–39], improved inner and outer bounds on the

S-B tradeoff of exact repair regenerating codes for more general (n, k, d) pa-

rameters are proposed. Specifically, In [21], it was shown that if regenerating

codes with parameters of k = d = n − 1 have linear encoding and decoding

procedures, the properties of the regenerating codes can be expressed by some

conditions of its parity check matrix. By exploiting those conditions, in [23],

an outer bound on the S-B tradeoff of linear regenerating codes was proposed.

The outer bound is identical to the inner bound proposed in [24] in the case

of k = d = n − 1, which implies that the optimal S-B tradeoff of exact repair

linear regenerating codes is characterized in that case.

1.4 Main Contribution

In this dissertation, we propose the two outer bounds on the storage-bandwidth

tradeoff on the S-B tradeoff of linear regenerating codes. We propose generalized

conditions of the dual codes of cooperative regenerating codes, and derive the

outer bounds from them. The outer bounds suggest the (α, γ) pairs that no

exact repair codes can achieve but only functional repair codes can.

The following theorem describes the first outer bound on the S-B tradeoff

of linear cooperative regenerating codes which is mainly discussed in Chapter

10

2.

Theorem 1. Assume an (n, k, d, r)-linear cooperative regenerating code. If the

exact repair model is used, then an upper bound of the file size B is expressed

as

B ≤ s− 1

s+ 1
(d+ r)α+

2

s(s+ 1)

g∑
h=1

lh min
(
sα, hα,∆l

h

)
, (1.3)

where l = (l1, · · · , lg) denotes a vector whose elements are integers satisfying

1 ≤ lh ≤ r for 1 ≤ h ≤ g and the sum of its elements
∑g

h=1 lh equals k. s is an

integer with 1 ≤ s ≤ g and ∆l
h is defined as

∆l
h :=


(d−k+

∑h
t=1 lt)β1 + (r − lh)β2, if s = 1,

(d−k+
∑h

t=1 lt)β1 + ch(r − lh)β2, if 2 ≤ s ≤ g,

(1.4)

where ch = h− bh and bh is defined as

bh := max
A⊂{0,··· ,h−1},∑

t∈A lt≤r−lh

|A|. (1.5)

Proof. The proof of Theorem 1 will be discussed in Section 2.4.

To the best of our knowledge there have been no results considering the

outer bounds on the S-B tradeoff of the multiple repair case (r ≥ 2). We derive

the outer bound described in Theorem 1 by constructing a rank lower bound of

parity check matrices of cooperative regenerating codes. This method is first

used in [23], which proposed an outer bound on the S-B tradeoff for the case of

d = k = n− 1 and r = 1.

11

The second outer bound, considered in Chapter 3, is developed for the case

of single node repair (r = 1). We derived the two sub-bounds independently,

where one is stated in Theorem 2, and the other is in Theorem 3.

Theorem 2 (Sub-bound 1). Suppose a linear regenerating code under the

exact repair model with parameters (n, k, d, α, β). Define τ = d − k + 1 and

Q = bd+1
τ c. The size of data file B is bounded by

s(s+ 1)

2
B ≤ s(s− 1)

2
kα+ spα+

q(q − 1)

2
R(α, β)

+
1

2
(k − p− (q − 1)τ)(k − p+ (q + 1)τ − 1)β

+

s−1∑
t=1

min (tτα, (q − 1)R(α, β) + τ(k − p− (q − 1)τ)β))

(1.6)

where s, q and p are arbitrary integers satisfying 1 ≤ q ≤ Q, 0 ≤ p ≤ k−(q−1)τ ,

and 1 ≤ s ≤ d− (τ − 1)q − p. R(α, β) is defined as

R(α, β) =

τ∑
i=1

min(α, (τ + i− 1)β). (1.7)

Proof. The proof of this theorem will be discussed in Section 3.4.1.

Theorem 3 (Sub-bound 2). Suppose a linear regenerating code under the exact

repair model with parameters (n, k, d, α, β). The size of data file B is bounded

by

σBB ≤ σαα+ σββ (1.8)

12

where σB, σα and σβ is defined as

σB = (2τ + k − p− 1)(s2 + s− 2) + 2(k − p− 1),

σα = 2(k − p− 1)p+ (2τ + k − p− 1)(sk + 2p)(s− 1),

σβ = (2τ + k − p− 1)(k − p)(k − p+ 2(s− 1)τ − 1),

and s, p are arbitrary integers satisfying 1 ≤ s ≤ k − p− 1 and 2 ≤ p ≤ k.

Proof. The proof of this theorem will be discussed in Section 3.4.2.

Each sub-bound has its own condition to be tighter than the other. One

sub-bound is more effective in high rates (k/n > 1
2), but the other sub-bound

becomes tighter when the code rate is low (k/n < 1
2). In addition we shall

verify that the two sub-bounds are asymptotically optimal in very high or low

rates.

13

Chapter 2

An Outer Bound on the Storage-Bandwidth Trade-

off of Cooperative Regenerating Codes

2.1 Conditions for Parity Check Matrices of Linear

Cooperative Regenerating Codes

Suppose (n, k, d, r)-cooperative regenerating codes encode a 1×B message vec-

tor m into a 1× nα codeword c. The first α symbols of c correspond to the α

symbols stored in the first node, the next α symbols are stored in the second

node, and so on. Let c1, · · · , cn denote n code symbols of c, each of which has

length α, i.e.,

c = [c1 c2 · · · cn]. (2.1)

We define linear cooperative regenerating codes as the cooperative regen-

14

erating codes where the encoding and decoding process performed in the data

collection and node repair process is linear. A linear cooperative regenerating

code with parameters of (n, k, d, r) can be regarded as a kind of (nα,B)-linear

codes, and there exist the B × nα generator matrix G and the (nα−B)× nα

parity check matrix H which satisfy

c = mG, GHT = 0, (2.2)

rank(G) = B, rank(H) = nα−B. (2.3)

Linearity of data collection process follows from (2.2). The following sufficient

conditions ensure that the node repair process of (n, k, d, r)-cooperative regen-

erating codes are linear.

• Each of the β1 symbols sent from a helper to a newcomer in Phase 1 is a

linear combination of the α symbols that the helper stores.

• Each of the β2 symbols sent from newcomer m to newcomer i (6= m) in

Phase 2 is a linear combination of dβ1 symbols that newcomer m received

from its corresponding d helpers in Phase 1.

• Each of the α symbols a newcomer obtained is a linear combination of

γ = dβ1+(r−1)β2 symbols that the newcomer received from the d helpers

in Phase 1 and from the other r − 1 newcomers in Phase 2.

15

Lemma 1 gives some conditions that the generator and parity check matrices

of linear cooperative regenerating codes must satisfy. In order to simplify the

notation, we shall use the concept of thick columns and thick rows. Assume a

matrix M consists of mn submatrices as

M =



M11 M12 . . . M1n

M21 M22 . . . M2n

...
...

Mm1 Mm2 . . . Mmn


.

For sets I ⊂ [m] (:= {1, · · · ,m}) and J ⊂ [n], let MIJ be the matrix constructed

by collecting submatrices whose indices i and j belong to I and J , respectively.

Let Mi[n] = [Mi1 · · · Min] be the ith thick row for 1 ≤ i ≤ m and M[m]j =[
MT

1j · · · MT
mj

]T
be the jth thick column for 1 ≤ j ≤ n, where the superscript

T denotes the transpose operator. Specifically, out of nα columns of G and H,

the first α columns form the first thick column, the next α columns correspond

to the second thick column, and so on. In addition, we will use the following

notations in the rest of the dissertation. |A| denotes the cardinality of a set

A. For some integers m and n, [m] and [m,n] denote the sets {1, 2, · · · , n} and

{m,m + 1, · · · , n}, respectively. For a matrix M, let S(M) and S(MT) be its

column and row spaces. In denotes the n× n identity matrix and 0 denotes a

zero matrix where every element is 0.

16

Lemma 1. Consider an (n, k, d, r)-linear cooperative regenerating code with

n = d+ r. The parity check matrix H satisfies the following two conditions, (i)

and (ii).

(i) The rank of a matrix constructed by collecting n − k arbitrary thick

columns of H is (n− k)α.

(ii) For any index set R = {i1, · · · , ir} (i1 < · · · < ir) which is a subset of [n]

and satisfies |R| = r, there exists an rα× nα matrix

HR =



AR
i11

AR
i12

. . . AR
i1n

AR
i21

AR
i22

. . . AR
i2n

...
...

AR
ir1

AR
ir2

. . . AR
irn


satisfying the following Condition (a)-(c), where AR

ij is the α×α submatrix

of HR for i ∈ R and j ∈ [n].

(a) AR
RR = Irα

(b) If j ∈ D := [n] \R, then for all i ∈ R,

AR
ij = Pij + Tij = Pij +

∑
m∈R\{i}

Tij,m, (2.4)

such that

S(PT
ij) ⊂ UP

ij , (2.5)

17

S(TT
ij,m) ⊂ UP

mj , (2.6)

and

rank(TiD,m) ≤ β2, (2.7)

where UP
ij is a subspace whose dimension is smaller than or equal to

β1.

(c) S(HT
R) ⊂ S(HT)

Proof. See Subsection 2.1.1.

Remark 1. For the case of k = d, Condition (i) follows from Condition (ii).

Let R0 ⊂ [n] be a set of indices of n − k (= r) thick columns. Since HR0

obtained from Condition (ii) contains I(n−k)α in the location of the n− k thick

columns by Condition (ii)-(a), the row space of the matrix that consists of the

n− k thick columns includes S(I(n−k)α).

Remark 2. Lemma 1 can be regarded as a generalization of the conditions

for linear regenerating codes stated in [21]. If r = 1, Lemma 1 is reduced to

Proposition 2.1 of [21].

Remark 3. Condition (ii) originates from the cooperative node repair property.

The index sets R and D used in Condition (ii) of Lemma 1 correspond to the

sets of newcomers and helpers, respectively. HR describes the case that the r

18

Figure 2.1: An example of node repair process of (4, 2, 2, 2)-cooperative regen-

erating codes with (α, β1, β2) = (2, 1, 1). This example is borrowed from [7].

nodes which belong to R are repaired with the help of d nodes which belong

to D. Pij and Tij are related to Phase 1 and Phase 2, respectively. Each

row of HR corresponds to one of rα symbols of r newcomers. According to

Condition (ii)-(c), every row of HR must be orthogonal to all of nα codewords.

It implies that each of rα symbols of r newcomers can be represented by a linear

combination of dα symbols of d helpers. Refer to Subsection 2.1.1 for details.

We present a simple example of (4, 2, 2, 2)-cooperative regenerating codes

for reader’s better understanding. Consider an (8, 4)-linear code with generator

19

matrix

G =



1 0 0 0 1 0 2 0

0 1 0 0 0 2 0 1

0 0 1 0 1 0 1 0

0 0 0 1 0 1 0 1


. (2.8)

The message vector m = (A1, A2, B1, B2) is encoded into the codeword c =

(A1, A2, B1, B2, A1+B1, 2A2+B2, 2A1+B1, A2+B2). This code is a (n, k, d, r) =

(4, 2, 2, 2)-cooperative regenerating code with (α, β1, β2) = (2, 1, 1), and we will

verify that its parity check matrix H satisfies the conditions of Lemma 1. As

illustrated in Figure 2.1, there are n = 4 nodes, each of which has α = 2

symbols. The parity check matrix H is expressed as

H =



−1 0 −1 0 1 0 0 0

0 −2 0 −1 0 1 0 0

−2 0 −1 0 0 0 1 0

0 −1 0 −1 0 0 0 1


. (2.9)

H has 4 thick columns, and it can be easily verified that Condition (i) is satisfied

since every matrix made of n− k = 2 arbitrary thick columns has full rank.

In Figure 2.1, generation of two newcomers, newcomer 2′ and 4′, which

replaces two failed nodes, node 2 and 4, are described. Condition (ii) of Lemma

20

1 gives

H{2,4} =

 A{2,4}
21 A{2,4}

22 A{2,4}
23 A{2,4}

24

A{2,4}
41 A{2,4}

42 A{2,4}
43 A{2,4}

44



=



1 0 1 0 −1 0 0 0

0 2 0 1 0 −1 0 0

−1 0 0 0 −1 0 1 0

0 1 0 0 0 −1 0 1


(2.10)

which corresponds to the set of two indices of failed nodes R = {2, 4} can be

obtained from Condition (ii) of Lemma 1. It can be verified that each rows of

H{2,4} is orthogonal to every row of G, and this implies the row space of H{2,4}

belongs to the row space of H (Condition (ii)-(c)).

To verify that H{2,4} satisfies Condition (ii)-(b) of Lemma 1, consider the

repair of the two symbols of newcomer 2′. As shown in Figure 2.1, newcomer 2′

uses three symbols A1 (downloaded from node 1 in Phase 1), A1 + B2 (down-

loaded from node 3 in Phase 1), and B2 (downloaded from newcomer 4′ in

Phase 1) to generate B1 and B2 as

B1 = −A1 + (A1 +B2) + 0(B2), (2.11)

B2 = 0A1 + 0(A1 +B2) + 1(B2). (2.12)

Although B2 is downloaded from newcomer 4′, it also originates from the sym-

21

bols sent by node 1 and 3 to newcomer 4′. We have

B2 = (−2)A2 + (2A2 +B2). (2.13)

By combining (2.11)-(2.13), we have

[
B1 B2

]
∗

 1 0

0 1

+

[
A1 A2

]
∗

 1 0

0 2



+

[
A1 +B2 2A2 +B2

]
∗

 −1 0

0 −1

 (2.14)

=

[
B1 B2

]
A{2,4}

22 +

[
A1 A2

]
A{2,4}

21

+

[
A1 +B2 2A2 +B2

]
A{2,4}

23 = 0. (2.15)

By classifying the symbols according to the phase in which the symbol was

delivered, A{2,4}
21 and A{2,4}

23 can be decomposed into two components as

A{2,4}
21 = P21 + T21

= P21 + T21,4

=

 1 0

0 0

+

 0 0

0 2

 , (2.16)

22

A{2,4}
23 = P23 + T23

= P23 + T23,4

=

 1 0

0 0

+

 0 0

0 −1

 , (2.17)

where P21 and P23 are related to Phase 1, and T21 and T23 are related to

Phase 2. Similarly, by considering the repair of newcomer 4′, we can obtain

A{2,4}
41 and A{2,4}

43 as

A{2,4}
41 = P41 + T41

= P41 + T41,2

=

 0 0

0 +1

+

 −1 0

0 0

 , (2.18)

A{2,4}
43 = P43 + T43

= P43 + T43,2

=

 0 0

0 −1

+

 −1 0

0 0

 . (2.19)

If subspaces UP
21, UP

41, UP
23, and UP

43 are defined as UP
21 = S(PT

21), UP
41 =

S(PT
41), UP

23 = S(PT
23), and UP

43 = S(PT
43), (2.5) is straightforward, and (2.6) is

also satisfied since

S(TT
21,4) ⊂ S(PT

41) = UP
41, S(TT

41,2) ⊂ S(PT
21) = UP

21,

23

S(TT
23,4) ⊂ S(PT

43) = UP
43, and S(TT

43,2) ⊂ S(PT
23) = UP

23.

Lastly, (2.7) can also be verified since

rank([T21,4 T23,4]) = 1 ≤ β2

and rank([T41,2 T43,2]) = 1 ≤ β2.

2.1.1 Proof of Lemma 1

Condition (i) and (ii) of Lemma 1 can be derived based on the data collec-

tion property and the node repair property of cooperative regenerating codes,

respectively. Proof of (i) and (ii) is as follows.

Proof of (i). Let K be an arbitrary subset of [n] whose cardinality is k, and

define K̄ = [n] \ K. Suppose (nα,B)-linear codes encode a 1 × B message

vector m into a 1×nα codeword c. Let cK be the kα×1 vector which contains

k 1 × α code symbols that correspond to the index set K, and let HK be the

matrix formed by collecting k thick columns of H that correspond to the index

set K. Similarly, cK̄ and HK̄ can be defined by using K̄.

Assume that rank(HK̄) is smaller than (n− k)α. Since the columns of HK̄

are linearly dependent, there exists a nonzero vector s of length (n− k)α such

that sHT
K̄

= 0. Let c′ be a row vector of length nα with c′K = 0 and c′
K̄

= s.

24

c′ is a codeword because

c′HT = 0HT
K + sHT

K̄ = 0. (2.20)

However, since c′K = 0, the message vector m cannot be repaired from c′K , and

it contradicts the data collection property.

Proof of (ii). Condition (ii) of Lemma 1 states that for an index set R =

{i1, · · · , ir} (i1 < · · · < ir) such that R ⊂ [n] and |R| = r, there exists an

rα × nα matrix HR with rn α × α submatrices AR
i1,1

, · · · , AR
ir,n

satisfying the

following conditions (a)-(c)

(a) AR
RR = Irα

(b) If j ∈ D := [n] \R, then for all i ∈ R,

AR
ij = Pij + Tij = Pij +

∑
m∈R\{i}

Tij,m, (2.21)

such that

S(PT
ij) ⊂ UP

ij , (2.22)

S(TT
ij,m) ⊂ UP

mj , (2.23)

and

rank(TiD,m) ≤ β2, (2.24)

where UP
ij is a subspace whose dimension is smaller than or equal to β1.

25

(c) S(HT
R) ⊂ S(HT)

For a fixed index set R, consider a node repair process where the r newcom-

ers that corresponds to the index set R are cooperatively repaired with the help

of d nodes that corresponds to D = [n] \R. For i ∈ R and j ∈ D, node j sends

node i a 1 × β1 vector sij whose elements are linear combinations of elements

of cj = (c(j−1)α+1, · · · , cjα) in the first phase of the node repair process. This

encoding process can be specified by α× β1 matrix Φij as

sij = cjΦij for i ∈ R and j ∈ D. (2.25)

In the next phase, node m ∈ R \ {i} sends node i a 1× β2 vector tim whose

elements are linear combinations of the dβ1 elements of smj1 , · · · , smjd . i.e.,

tim = [smj1 · · · smjd]


Ψj1

im

...

Ψjd
im

 . (2.26)

=
∑
j∈D

smjΨ
j
im (2.27)

=
∑
j∈D

cjΦmjΨ
j
im, (2.28)

where Ψj
im is a β1 × β2 matrix for m ∈ R \ {i}. According to the node repair

property, ci = (c(i−1)α+1, · · · , ciα) can be reconstructed by linearly combining

26

dβ1 symbols of sjis (j ∈ D) and (r − 1)β2 symbols of tims (i ∈ R \ {i}) as

ci =
∑
j∈D

sijLβ1
ij +

∑
m∈R\{i}

timLβ2
im

=
∑
j∈D

cj{ΦijLβ1
ij +

∑
m∈R\{i}

ΦmjΨ
j
imLβ2

im}, (2.29)

where Lβ1
ij and Lβ2

im are encoding matrices with size of β1 × α and β2 × α,

respectively for j ∈ D and m ∈ R \ {i}.

For given indices of newcomer nodes R = {i1, i2, · · · , ir} (i1 < i2 < · · · <

ir), define an rα× nα matrix HR as

HR =


AR

i11
. . . AR

i1n

...

AR
ir1

. . . AR
irn

 (2.30)

where AR
ij (i ∈ R and j ∈ [n]) is an α × α submatrix of HR and defined as

follows. If j ∈ R,

AR
ij =


Iα if j = i

0 if j ∈ R \ {i}.
(2.31)

If j ∈ D, AR
ij is the sum of two α× α matrices, Pij and Tij , where

PT
ij = −ΦijLβ1

ij , (2.32)

TT
ij = −

∑
m∈R\{i}

ΦmjΨ
j
imLβ2

im =
∑

m∈R\{i}

TT
ij,m. (2.33)

By (2.31), it is clear that HR satisfies Condition (a). Moreover, by (2.32)

and (2.33), it can be easily verified that HR satisfies (2.5) by letting UP
ij =

27

S
(
(Lβ1

ij)
T
)

for all i ∈ R and j ∈ D. Since

[Tij1,m · · · Tijd,m]

= −
[(

Φmj1Ψ
j1
imLβ2

im

)T
· · ·

(
Φmj1Ψ

j1
imLβ2

im

)T]
= −

(
Lβ2
im

)T [(
Φmj1Ψ

j1
im

)T
· · ·

(
Φmj1Ψ

j1
im

)T]
,

(2.34)

rank([Tij1,m · · · Tijd,m]) ≤ rank(Lβ2
im) ≤ β2 is satisfied and (2.7) can also be

verified.

By using (2.31)-(2.33), (2.29) can be converted to

ci +
∑
j∈D

cj(AR
ij)

T = c[AR
i1 AR

i2 · · · AR
in]

T = 0. (2.35)

Since (2.35) must be satisfied for every codewords c, S(HT
R) must be orthogonal

to S(GT) and belong to S(HT). This implies Condition (c).

2.2 An Alternative Proof of Functional Repair Cut-

set Bound

In this section, we prove the cutset bound of functional-repair cooperative re-

generating codes (1.1) by using conditions given by Lemma 1.

28

Before the specific description, it should be emphasized that while we derive

the cutset bound (1.1) and the proposed outer bound (in Section 2.2 and 2.4,

respectively), we only consider the case of n = d + r. This is because every

(n, k, d, r)-cooperative regenerating code with n > d + r can be regarded as a

(d+ r, k, d, r)-cooperative regenerating code if some of d+ r nodes are chosen.

Note that both the cutset bound (1.1) and the proposed outer bound (1.3) do

not depend on the value of n, and yield the same outer bound under the same

values of k, d, and r regardless of n. Therefore, we assume n = d+ r in the rest

of the chapter.

The proof of (1.1) can be summarized in a few steps as follows.

(1) Choose an arbitrary vector l = (l1, · · · , lg) whose elements are integers

satisfying 1 ≤ lh ≤ r for every 1 ≤ h ≤ g and
∑g

h=1 lh = k.

(2) Construct the nα× nα matrix Hrepair that corresponds to l by properly

combining the rows of HR given by Lemma 1.

(3) Find a lower bound of rank(Hrepair). Since S(HT
repair) ⊂ S(HT), the

lower bound is also a lower bound of rank(H).

(4) By using the fact that B = nα − rank(H), an upper bound of B can be

derived.

We will use the technique that uses the lower bounds of rank(H) to find the

29

upper bounds of B not only in the proof of (1.1), but also in the proof of the

proposed outer bound (Theorem 1) described in Section 2.4. In addition, we

will reuse the matrix Hrepair constructed in this section in Section 2.4.

2.2.1 Construction of Hrepair

Consider a vector l = (l1, · · · , lg) such that 1 ≤ lh ≤ r for h ∈ [g] and∑g
h=1 lh = k. By adding an element l0 = n − k to the left side of l, if it

is extended to l∗ = (l0, l1, · · · , lg),
∑g

h=0 lh = n is satisfied. Define sets

R1, R2, · · · , Rg as

Rh = R
′
h ∪Nh for 1 ≤ h ≤ g, (2.36)

where

R
′
h :=

[
h−1∑
t=0

lt + 1,
h∑

t=0

lt

]
(2.37)

and Nh is defined to satisfy

Nh ⊂

[
h−1∑
t=0

lt

]
such that |Nh| = r − lh. (2.38)

By Condition (ii) of Lemma 1, for every 1 ≤ h ≤ g,

HRh
=



ARh

ih11
ARh

ih12
. . . ARh

ih1n

ARh

ih21
ARh

ih22
. . . ARh

ih2n

...
...

ARh

ihr 1
ARh

ihr 2
. . . ARh

ihrn



30

can be obtained, which corresponds to Rh := {ih1 , · · · ihr} (ih1 < · · · < ihr) defined

in (2.36), where ARh
ij (i ∈ Rh, j ∈ [n]) is an α×α submatrix of HRh

. Note that

Nh = {ih1 , · · · , ihr−lh
} and R

′
h = {ihr−lh+1, · · · , ihr}, since every element in Nh is

smaller than any element in R
′
h. By collecting the last lh thick rows out of r

thick rows of HRh
, an lhα× nα matrix ARh

R
′
h[n]

can be obtained. By combining

them vertically, we can obtain an nα× nα matrix

Hrepair =



H̃†H

AR1

R
′
1[n]

...

ARg

R′
g [n]


, (2.39)

where H̃ is the (nα−B)× (n− k)α matrix constructed by collecting the first

n− k thick columns of the parity check matrix H, and H̃† (:= (H̃T H̃)−1H̃T) is

its left inverse such that H̃†H̃ = I(n−k)α. According to Condition (i) of Lemma

1, H̃ must have full column rank, and its left inverse always exists. Note that

the first (n− k)α columns of H̃†H are equal to H̃†H̃ = I(n−k)α.

Let nα rows of Hrepair be grouped in the pattern of l0α, · · · , lgα. By group-

31

ing its columns in the same pattern, Hrepair has (g + 1)2 submatrices as

Hrepair =



H0,0 H0,1 . . . H0,g

H1,0 H1,1 . . . H1,g

...
...

Hg,0 Hg,1 . . . Hg,g


, (2.40)

where Hh,t denotes the submatrix with the size of lhα×ltα contained commonly

in the hth thick row and the tth thick column of Hrepair. Note that

[H0,0 · · ·H0,g] = H̃†H (2.41)

and

Hh,t = ARh

R
′
hR

′
t

, for 1 ≤ h ≤ g. (2.42)

Specifically, Hh,h is the hth diagonal submatrix with the size of lhα× lhα. We

have already mentioned that H0,0 = H̃†H̃ = I(n−k)α . In addition, it is easily

verified that

Hh,h = Ilhα for 1 ≤ h ≤ g, (2.43)

according to Condition (ii)-(a) of Lemma 1.

Figure 2.2 illustrates an example of constructing Hrepair that corresponds

to l∗ = (l0, l1, l2, l3, l4) = (6, 1, 2, 3, 1). The parameters of the cooperative regen-

erating code are set to be (n, k, d, r) = (13, 7, 8, 5). The left side of Figure 2.2

32

Figure 2.2: An example of construction of Hrepair. The code parameters

(n, k, d, r) = (13, 7, 8, 5) and l∗ = (l0, l1, l2, l3, l4) = (6, 1, 2, 3, 1) are used.

33

expresses HR1 , · · · ,HR4 , and H̃†H. The smallest squares denote α×α compo-

nents. For 1 ≤ h ≤ 4, the r2 = 25 shaded squares correspond to ARh
RhRh

which

equals Irα by Condition (ii)-(a) of Lemma 1. The rectangle enclosed by bold

lines corresponds to ARh

R
′
h[n]

, which participates in the construction of Hrepair.

It can be verified that the lower part of the blue-shaded squares becomes Hh,h,

the hth diagonal submatrix of Hrepair, which is still an identity matrix, Ilhα.

The right side of Figure 2.2 illustrates Hrepair, and its (g+1)2 = 52 submatrices

are emphasized by bold lines.

Remark 4. As stated in (2.36), Rh is the union of two disjoint subsets R
′
h

and Nh for 1 ≤ h ≤ g. R
′
hs are given deterministically by (2.37). However,

Nhs are not deterministic, and there can be various forms of Nh that satisfy

Nh ⊂ [
∑h−1

t=0 lt] and |Nh| = r − lh. The gray-shaded region of Figure 2.2

corresponds to ARh

R
′
hNh

for 1 ≤ h ≤ g. ARh

R
′
hNh

becomes a zero matrix because

it is a part of the lower triangular part of ARh
RhRh

(= Irα). Hence, the part of

ARh

R
′
h[
∑h−1

t=0 lt]
that is a zero matrix can be controlled by properly selecting Nh.

Though the position of zero matrices is not important in this section, it will

play an important role in the proof of Theorem 1 in Section 2.4.

34

2.2.2 Lower Bounds of rank(Hrepair)

Hrepair has g + 1 thick columns, H[0,g],0, · · · ,H[0,g],g. Define δ0, δ1, · · · , δg as

δ0 = rank(H[0,g],0), (2.44)

and

δh = rank([H[0,g],0 · · ·H[0,g],h])− rank([H[0,g],0 · · ·H[0,g],h−1]),

if 1 ≤ h ≤ g. (2.45)

Therefore, δh indicates the increment of rank after the hth thick column is

added.

Since H0,0 = I(n−k)α, n − k columns of H[0,g],0 are linearly independent.

This implies

δ0 = rank(H0,0) = (n− k)α (2.46)

If h ≥ 1, δh is lower bounded by

δh ≥ rank([Hh,0 · · · Hh,h])−rank([Hh,0 · · · Hh,h−1]) (2.47)

≥ rank(Hh,h)− rank([Hh,0 · · · Hh,h−1]) (2.48)

= lhα− rank
(

ARh

R
′
hLh

)
, (2.49)

where Lh is defined as

Lh :=

[
h−1∑
t=0

lt

]
\Nh, (2.50)

35

and (2.49) follows from the relations Hh,h = Ilhα and ARh

R
′
hNh

= 0 (See Remark

4).

Because of the fact that Lh ⊂ [n] \Rh, every α× α submatrix contained in

ARh

R
′
hLh

can be expressed as

ARh
ij = Pij + Tij = Pij +

∑
m∈Rh\{i}

Tij,m (2.51)

by Condition (ii)-(b) of Lemma 1 where definitions of Pij , Tij and Tij,m are

given in Lemma 1. Define matrices P′
ij and T′

ij as

P′
ij := Pij +

∑
m∈R′

h\{i}

Tij,m, T′
ij :=

∑
m∈Nh

Tij,m. (2.52)

for i ∈ R
′
h and j ∈ Lh. Therefore, ARh

ij = P′
ij +T′

ij is satisfied for every i ∈ R
′
h

and j ∈ Lh and we have

ARh

R
′
hLh

= P′

R
′
hLh

+ T′

R
′
hLh

. (2.53)

By using Condition (ii)-(b) of Lemma 1, rank(P′

R
′
hLh

) and rank(T′

R
′
hLh

) are

36

upper bounded by

rank(P′

R
′
hLh

) ≤
∑
j∈Lh

rank(P′

R
′
hj
) (2.54)

≤
∑
j∈Lh

dim(
⊕
l∈R′

h

Ulj) (2.55)

≤
∑
j∈Lh

∑
l∈R′

h

dim(Ulj) (2.56)

≤ |R′
h||Lh|β1 (2.57)

= |R′
h|

(
h−1∑
t=0

lt − |Nh|

)
β1 (2.58)

= lh(d− k +

h∑
t=1

lt)β1 (2.59)

and

rank(T′

R
′
hLh

) ≤
∑
i∈R′

h

rank(T′
iLh

) (2.60)

=
∑
i∈R′

h

∑
m∈Nh

rank(TiLh,m) (2.61)

≤
∑
i∈R′

h

∑
m∈Nh

rank(Ti([n]\Rh),m) (2.62)

≤ |R′
h||Nh|β2 (2.63)

= lh(r − lh)β2, (2.64)

respectively, where the operator
⊕

denotes the sum of subspaces, and (2.55)

37

follows from

S((P′
ij)

T) = S(PT
ij +

∑
m∈R′

h\{i}

TT
ij,m) (2.65)

⊂ S(PT
ij)⊕

⊕
m∈R′

h\{i}

S(TT
ij,m) (2.66)

⊂ Uij ⊕
⊕

m∈R′
h\{i}

Umj (2.67)

=
⊕
l∈R′

h

Ulj (2.68)

for every i ∈ R
′
h

By applying (2.59) and (2.64) to (2.49), we have

δh ≥ lhα− rank
(

ARh

R
′
hLh

)
(2.69)

≥ lhα−
(

rank
(

P′

R
′
hLh

)
+ rank

(
T′

R
′
hLh

))
(2.70)

≥ lhα−

(
lh(d− k +

h∑
t=1

lt)β1 + lh(r − lh)β2

)
. (2.71)

In addition, since δh, a rank increment, must be positive, δh is lower bounded

by

δh ≥ lh min

(
0, α−

(
(d− k +

h∑
t=1

lt)β1 + (r − lh)β2

))
. (2.72)

Since rank(Hrepair) =
∑g

h=0 δh, rank(Hrepair) is lower bounded by

rank(Hrepair) =

g∑
h=0

δh

≥ (n− k)α+

g∑
h=1

lh min

(
0, α−

(
(d− k +

h∑
t=1

lt)β1+(r − lh)β2

))
. (2.73)

38

2.2.3 Upper Bounds of B

Since the rows of Hrepair originate from HR0 , · · · ,HRg , by Condition (ii)-(c) of

Lemma 1, S(HT
repair) must be a subspace of S(HT). Hence, the lower bound

of rank(Hrepair) is also a lower bound of rank(H). By using B = nα− rank(H),

an upper bounds of B can be derived as

B = nα− rank(H) (2.74)

≤ nα− rank(Hrepair) (2.75)

= (n− k +

g∑
h=1

lh)α−rank(Hrepair) (2.76)

=

g∑
h=1

lh min
(
α, (d− k +

h∑
t=1

lt)β1 + (r − lh)β2
)

(2.77)

=

g∑
h=1

lh min
(
α, (d−

g∑
t=h+1

lt)β1 + (r − lh)β2
)
, (2.78)

By using (l
′
g, l

′
g−1, · · · , l

′
1) := (l1, l2, · · · , lg), (1.1) is derived as

B ≤
g∑

h=1

l
′
h min

[
α, (d−

h−1∑
t=1

l
′
t)β1 + (r − l

′
h)β2

]
. (2.79)

2.3 Block Matrices with Full-Rank Diagonal Blocks

Our objective is to find a tight upper bound on the file size B stored in a

given linear cooperative regenerating code with parameters (n, k, d, r, α, β). In

Section 2.2, we tried to find a lower bound of Hrepair, and converted it into an

39

upper bound of B based on the relation that

B = nα− rank(H) (2.80)

≤ nα− rank(Hrepair). (2.81)

where (2.81) holds since the matrix Hrepair is constructed to satisfy S(HT
repair) ⊂

S(HT).

Hrepair is a block matrix which has g2 submatrices as

Hrepair =



H0,0 H0,1 . . . H0,g

H1,0 H1,1 . . . H1,g

...
...

Hg,0 Hg,1 . . . Hg,g


, (2.82)

In order to find a tighter lower bound on the rank(Hrepair), the property of

Hrepair we shall focus on is that the every diagonal submatrices of Hrepair is

nonsingular as

Hh,h = Ilhα for 0 ≤ h ≤ g. (2.83)

In this section, we shall derive the general properties of the block matrices

with full-rank diagonal blocks. The properties and definitions provided in this

section will be used not only in the derivation of Theorem 1 in this chapter,

but also in the derivation of the second outer bound (Theorem 2 and 3) which

will be discussed in the next chapter.

40

2.3.1 Definitions

In this subsection, we present several definitions of the block matrices, which

will be used in common for the derivations of the outer bounds on the regener-

ating codes in this dissertation.

Suppose a block matrix M is broken into n2 submatrices as

M =



M1,1 M1,2 . . . M1,n

M2,1 M2,2 . . . M2,n

...
...

Mn,1 Mn,2 . . . Mn,n


= [M1 · · ·Mn] .

where M1, · · · ,Mn are n thick columns of M. The number of columns (rows)

in each thick column (thick row) does not have to be identical.

We will define n − 1 matrices M(1), · · · ,M(n−1), which originate from M.

First of all, define M(1) := M. M(1) has n2 submatrices and n thick columns

as M does. Let M(1)
i,j be a submatrix of M(1) for i, j ∈ [n] and M(1)

i be the ith

thick column of M(1) for i ∈ [n] such that

M(1) =



M(1)
1,1 M(1)

1,2 . . . M(1)
1,n

M(1)
2,1 M(1)

2,2 . . . M(1)
2,n

...
...

M(1)
n,1 M(1)

n,2 . . . M(1)
n,n


=
[
M(1)

1 · · ·M(1)
n

]
.

41

For 2 ≤ s ≤ n−1, let M(s) denote a block matrix with n(n−s+1) submatrices

M(s)
1,s, · · · ,M

(s)
n,n and n− s+ 1 thick columns M(s)

s , · · · ,M(s)
n such that

M(s) =



M(s)
1,s M(s)

1,s+1 . . . M(s)
1,n

M(s)
2,s M(s)

2,s+1 . . . M(s)
2,n

...
...

M(s)
n,s M(s)

n,s+1 . . . M(s)
n,n


=
[
M(s)

s · · ·M(s)
n

]
.

M(2),M(3), · · · ,M(n−1) are defined in a recursive manner as follows. M(s−1)

has n− s+ 2 thick columns M(s−1)
s−1 , · · · ,M(s−1)

n . For s ≤ i ≤ n, define

V
(s)
i := S(M(s−1)

i) ∩ S([M(s−1)
s−1 · · ·M(s−1)

i−1]).

and let M(s)
i be the matrix with dim(V

(s)
i) columns that are the basis vectors

of V (s)
i . The pattern of partitioning the thick rows of M(s) is assumed to be the

same with the partitioning pattern of thick rows of M(1) for every 2 ≤ s ≤ n−1.

Let us define additional notations related to the rank of submatrices of M(s)

for 1 ≤ s ≤ n− 1 as follows.

• δ
(s)
i (M) :=



rank(M(s)
s), if i = s

rank
([

M(s)
s · · ·M(s)

i

])
−rank

([
M(s)

s · · ·M(s)
i−1

])
,

if s+ 1 ≤ i ≤ n

• ρ(s)(M) := rank(M(s)) =
∑n

i=s δ
(s)
i (M)

42

• T
(s)
i (M) :=


0, if i = s,∑i−1

j=s rank(M(s)
i,j), if s+ 1 ≤ i ≤ n.

• T̄
(s)
i (M) :=


0, if i = s,

rank
([

M(s)
i,s · · ·M

(s)
i,i−1

])
, if s+ 1 ≤ i ≤ n.

2.3.2 Properties of Block Matrices with Full-Rank Diagonal

Blocks

In this subsection, we consider block matrices of which the every diagonal block

has full column rank. Specifically, suppose that M satisfies the following two

conditions (i) and (ii):

(i) the columns of Mi are linearly independent for every 1 ≤ i ≤ n

(ii) rank(Mi,i) = rank(Mi) for every 1 ≤ i ≤ n,

The following proposition states that Conditions (i) and (ii) are inherited

to M(1), · · · ,M(n−1).

Proposition 1. If M (= M(1)) satisfies Condition (i) and (ii), then M(2), · · · ,M(n−1)

have similar properties, which are:

(i)′ the columns of M(s)
i are linearly independent for every s ≤ i ≤ n,

(ii)′ rank(M(s)
i,i) = rank(M(s)

i) for every s ≤ i ≤ n.

43

Proof. The first condition is straightforward, since the columns of M(s)
i are the

basis of V (s)
i . Since rank(M(s)

i,i) ≤ rank(M(s)
i), in order to derive the second con-

dition, we need to show rank(M(s)
i,i) ≥ rank(M(s)

i). We will show this by induc-

tion. Assume rank(M(s−1)
i,i) = rank(M(s−1)

i) holds for some 2 ≤ s ≤ n− 1. Sup-

pose that the basis of S(M(s)
i) is extended to the basis of S(M(s−1)

i) by adding

additional dim(S(M(s−1)
i)) − dim(S(M(s)

i)) linearly independent columns. Let

us focus on the part of these dim(S(M(s−1)
i))−dim(S(M(s)

i)) columns that cor-

respond to the position of the ith thick row. We can observe that the subspace

spanned by these dim(S(M(s−1)
i))−dim(S(M(s)

i)) (small) columns and S(M(s)
i,i)

is exactly the same as S(M(s−1)
i,i). This implies

rank(M(s−1)
i,i) ≤ rank(M(s)

i,i) + rank(M(s−1)
i)− rank(M(s)

i).

Since we assumed that rank(M(s−1)
i,i) = rank(M(s−1)

i) holds, this leads to rank(M(s)
i,i) ≥

rank(M(s)
i).

In addition, we introduce the following propositions.

Proposition 2. For 1 ≤ s ≤ n− 2 and s+ 1 ≤ i ≤ n,

δ
(s)
i (M) = rank(M(s)

i,i)− rank(M(s+1)
i,i), (2.84)

T̄
(s)
i (M) ≤ T

(s)
i (M)− T

(s+1)
i (M). (2.85)

44

Proof. We can obtain (2.84) as

δ
(s)
i (M) = rank

([
M(s)

s · · ·M(s)
i

])
−rank

([
M(s)

s · · ·M(s)
i−1

])
= dim

(
S
([

M(s)
s · · ·M(s)

i−1

])
⊕ S

(
M(s)

i

))
−dim

(
S
([

M(s)
s · · ·M(s)

i−1

]))
= rank

(
M(s)

i

)
−dim

(
S
([

M(s)
s · · ·M(s)

i−1

])
∩ S

(
M(s)

i

))
(2.86)

= rank
(

M(s)
i

)
− rank

(
M(s+1)

i

)
= rank

(
M(s)

i,i

)
− rank

(
M(s+1)

i,i

)
(2.87)

where (2.86) holds since for any two subspace U and V ,

dim(U ⊕ V) = dim(U) + dim(V)− dim(U ∩ V). (2.88)

Equation (2.85) can also be derived by using (2.88). The case of i = s+1 is

trivial since T̄
(s)
s+1(M) = T

(s)
s+1(M) and T

(s+1)
s+1 (M) = 0. For s+ 2 ≤ i ≤ n, using

45

the definition of T̄ (s)
i (M), we have

T̄
(s)
i (M) = rank

([
M(s)

i,s · · ·M
(s)
i,i−1

])
= rank

([
M(s)

i,s · · ·M
(s)
i,i−2

])
+ rank(M(s)

i,i−1)

−dim
(
S
([

M(s)
i,s · · ·M

(s)
i,i−2

])
∩S
(

M(s)
i,i−1

))
(2.89)

≤ rank
([

M(s)
i,s · · ·M

(s)
i,i−2

])
+ rank(M(s)

i,i−1)

−rank(M(s+1)
i,i−1) (2.90)

≤ rank
([

M(s)
i,s · · ·M

(s)
i,i−3

])
+rank(M(s)

i,i−2)− rank(M(s+1)
i,i−2)

+rank(M(s)
i,i−1)− rank(M(s+1)

i,i−1) (2.91)

...

≤ rank
(

M(s)
i,s

)
+

i−1∑
j=s+1

(
rank(M(s)

i,j)− rank(M(s+1)
i,j)

)
(2.92)

= T
(s)
i (M)− T

(s+1)
i (M),

where (2.89) follows from (2.88) with U = S
([

M(s)
i,s · · ·M

(s)
i,i−2

])
and V =

S
(

M(s)
i,i−1

)
, and (2.90) holds since each vector in S(M(s+1)

i,i−1) must be contained

in both S
([

M(s)
i,s · · ·M

(s)
i,i−2

])
and S

(
M(s)

i,i−1

)
. We can obtain (2.91) and (2.92)

by repeating the similar steps done in (2.89)-(2.90) recursively.

As discussed at the beginning of this section, the goal we want to achieve

46

is to find a tight lower bound of rank(M), since we are going to use Hrepair

for M. The following lemma deals with lower bounds of rank(M). We will use

Lemma 2 to derive the lower bound of rank(Hrepair) for 2 ≤ s ≤ g in the next

section. Note that the following theorem is extended from Theorem 3.3 of [23]

(See Remark 5).

Lemma 2. Suppose a block matrix M with n2 submatrices satisfies the fol-

lowing Condition (i) and (ii),

(i) For any i ∈ [n], the thick column Mi has linearly independent columns.

(ii) rank(Mi,i) = rank(Mi) for every i ∈ [n].

then, for any positive integer s ≥ 1, rank(M) is lower bounded by

s(s+ 1)

2
rank(M) ≥

n∑
i=1

max
(
0, (s− i+ 1)rank(Mi,i), srank(Mi,i)− T

(1)
i (M)

)
.

(2.93)

47

Proof. For 1 ≤ s ≤ n− 1, by using (2.84), we have

δ(s)s (M) = rank(M(s)
s,s)

= rank(M(s−1)
s,s)− δ(s−1)

s (M)

= rank(M(s−2)
s,s)− δ(s−2)

s (M)− δ(s−1)
s (M)

...

= rank(M(1)
s,s)−

s−1∑
j=1

δ(j)s (M). (2.94)

Similarly, for 1 ≤ s ≤ n− 1 and s+ 1 ≤ i ≤ n,

δ
(s)
i (M) ≥rank

([
M(s)

i,s · · ·M
(s)
i,i

])
−rank

([
M(s)

i,s · · ·M
(s)
i,i−1

])
= rank

([
M(s)

i,s · · ·M
(s)
i,i

])
− T̄

(s)
i (M)

≥ rank
(

M(s)
i,i

)
− T̄

(s)
i (M)

= rank
(

M(1)
i,i

)
−

s−1∑
j=1

δ
(j)
i (M)− T̄

(s)
i (M). (2.95)

By collecting every δ
(s)
i (M) terms on the left hand side of (2.94) and (2.95), we

can derive the lower bounds of
∑s

j=1 δ
(j)
i (M) for s ≤ i ≤ n as

s∑
j=1

δ
(j)
i (M) ≥


rank(M(1)

s,s) if i = s,

rank(M(1)
i,i)− T̄

(s)
i (M) if s+ 1 ≤ i ≤ n.

(2.96)

For the next step, we will find the lower bounds of
∑min(i,s)

q=1 (s− q + 1)δ
(q)
i (M)

for 1 ≤ i ≤ n by using (2.96). If i = 1,
min(i,s)∑
q=1

(s− q + 1)δ
(q)
i (M) = sδ

(1)
1 (M) = srank(M(1)

1,1). (2.97)

48

For 2 ≤ i ≤ s,

min(i,s)∑
q=1

(s− q + 1)δ
(q)
i (M)

= (s− i+ 1)

i∑
q=1

δ
(q)
i (M) +

i−1∑
q=1

q∑
j=1

δ
(j)
i (M)

≥ (s− i+ 1)rank(M(1)
i,i) +

i−1∑
q=1

q∑
j=1

δ
(j)
i (M) (2.98)

≥ (s−i+1)rank(M(1)
i,i) +

i−1∑
q=1

(
rank(M(1)

i,i)− T̄
(q)
i (M)

)
(2.99)

≥ srank(M(1)
i,i)−

i−1∑
q=1

T̄
(q)
i (M)

≥ srank(M(1)
i,i)− T

(1)
i (M), (2.100)

and for s+ 1 ≤ i ≤ n,

min(i,s)∑
q=1

(s− q + 1)δ
(q)
i (M) =

s∑
q=1

(s− q + 1)δ
(q)
i (M)

=
s∑

q=1

q∑
j=1

δ
(j)
i (M) (2.101)

≥ srank(M(1)
i,i)−

s∑
q=1

T̄
(q)
i (M) (2.102)

≥ srank(M(1)
i,i)− T

(1)
i (M), (2.103)

where (2.99) and (2.102) follow from (2.96), and (2.100) and (2.103) follow from

49

(2.85) as

i−1∑
q=1

T̄
(q)
i (M) = T̄

(i−1)
i (M) +

i−2∑
q=1

(
T
(q)
i (M)− T

(q+1)
i (M)

)
= T

(1)
i (M)− T

(i−1)
i (M) + T̄

(i−1)
i (M)

≤ T
(1)
i (M).

for 1 ≤ i ≤ s, and

s∑
q=1

T̄
(q)
i (M) = T̄

(s)
i (M) +

s−1∑
q=1

(
T
(q)
i (M)− T

(q+1)
i (M)

)
= T

(1)
i (M)− T

(s)
i (M) + T̄

(s)
i (M)

≤ T
(1)
i (M).

for s+ 1 ≤ i ≤ n, Since δ
(s)
i (M) is always positive for every s and i, we have

min(i,s)∑
q=1

(s− q + 1)δ
(q)
i (M) ≥


(s− i+ 1)rank(M(1)

i,i), if 2 ≤ i ≤ s

0, if s+ 1 ≤ i ≤ n.

(2.104)

from (2.101) and (2.98).

By combining (2.97), (2.100), (2.103) and (2.104), we have

n∑
i=1

min(i,s)∑
q=1

(s− q + 1)δ
(q)
i (M)

≥
n∑

i=1

max
(
0, (s− i+ 1)rank(M(1)

i,i), srank(M(1)
i,i)− T

(1)
i (M)

)
. (2.105)

Since M(s) originates from M(s−1), we have ρ(1)(M) ≥ ρ(2)(M) ≥ · · · ≥

50

ρ(n−1)(M). By using this, we note that the left hand side of (2.105) is up-

per bounded by

n∑
i=1

min(i,s)∑
q=1

(s− q + 1)δ
(q)
i (M) =

s∑
q=1

(s− q + 1)

n∑
i=q

δ
(q)
i (M)

=
s∑

q=1

(s− q + 1)ρ(q)(M)

≤ s(s+ 1)

2
ρ(1)(M), (2.106)

and hence we complete the derivation of (2.93) for the case of 1 ≤ s ≤ n− 1.

When s ≥ n, we prove (2.93) by induction. Suppose that (2.93) holds for

some s ≥ n − 1. By adding the term (s + 1)rank(M) to both sides, (2.93) for

s+ 1 also holds as

(s+ 1)(s+ 2)

2
rank(M)

≥
n∑

i=1

max
(
(s− i+ 1)rank(Mi,i), srank(Mi,i)− T

(1)
i (M)

)
+ (s+ 1)rank(M)

≥
n∑

i=1

max
(
(s− i+ 1)rank(Mi,i), srank(Mi,i)− T

(1)
i (M)

)
+

n∑
i=1

rank(Mi,i) (2.107)

≥
n∑

i=1

max
(
(s− i+ 2)rank(Mi,i), (s+ 1)rank(Mi,i)− T

(1)
i (M)

)
,

where (2.107) follows from the fact that

n∑
i=1

rank(Mi,i) ≤ nrank(M) ≤ (s+ 1)rank(M).

51

Since we have already proved the case of s = n − 1, we can verify that (2.93)

holds for every s ≥ n in a recursive manner.

Remark 5. Lemma 2 is an extension of Theorem 3.3 of [23]. The difference

from [23] is the existence of the max(·) operation. Theorem 3.3 of [23] is equiv-

alent to

s(s+1)

2
rank(M) ≥

n∑
i=1

(srank(Mi,i)− Ti)

= s
n∑

i=1

rank(Mi,i)−
n∑

i=2

i−1∑
j=1

rank(Mi,j)

instead of (2.93).

In addition, we introduce another lower bound of rank(M) which will do an

important role in Chapter 3.

Lemma 3. Assume a block matrix M with n2 submatrices which satisfies

Condition (i) and (ii),

(i) For any i ∈ [n], the thick column Mi has linearly independent columns.

(ii) rank(Mi,i) = rank(Mi) for every i ∈ [n].

52

For any positive integer 1 ≤ s ≤ n− 1, rank(M) is lower bounded by

srank(M) ≥
n∑

i=1

rank(Mi,i)−
n∑

i=s

T̄
(s)
i (M)

+max

(
0, (s− 1)rank(Mn,n)−

s−1∑
i=1

T̄ (i)
n (M)

)
. (2.108)

Proof. At first, we derive a lower bound of
∑s

j=1 ρ
(j). ρ(s)(M) is lower bounded

by

ρ(s)(M) =

n∑
i=s

δ
(s)
i

≥
n∑

i=s

rank
(

M(1)
i,i

)
−

s−1∑
j=1

δ
(j)
i (M)− T̄

(s)
i (M)

 (2.109)

=

n∑
i=s

rank
(

M(1)
i,i

)
−

s−1∑
j=1

n∑
i=s

δ
(j)
i (M)−

n∑
i=s

T̄
(s)
i (M)

=

{
n∑

i=1

rank
(

M(1)
i,i

)
−

s−1∑
i=1

rank
(

M(1)
i,i

)}
−

n∑
i=s

T̄
(s)
i (M)

−
s−1∑
j=1


n∑

i=j

δ
(j)
i (M)−

s−1∑
i=j

δ
(j)
i (M)


=

n∑
i=1

rank
(

M(1)
i,i

)
−

n∑
i=s

T̄
(s)
i (M)−

s−1∑
j=1

ρ(j)(M)

−
s−1∑
i=1

rank
(

M(1)
i,i

)
−

i∑
j=1

δ
(j)
i (M)

 (2.110)

=

n∑
i=1

rank
(

M(1)
i,i

)
−

n∑
i=s

T̄
(s)
i (M)−

s−1∑
j=1

ρ(j)(M) (2.111)

where (2.109) follows from (2.94) and (2.95), (2.110) holds because of the fact

53

that
s−1∑
j=1

s−1∑
i=j

δ
(j)
i =

s−1∑
i=1

i∑
j=1

δ
(j)
i ,

and (2.111) follows from (2.96). By moving the last term of the right side, we

have

s∑
j=1

ρ(j)(M) ≥
n∑

i=1

rank
(

M(1)
i,i

)
−

n∑
i=s

T̄
(s)
i (M). (2.112)

Next, the quantity ρ(i)(M)− ρ(i+1)(M) is lower bounded by,

ρ(i)(M)− ρ(i+1)(M) = rank(M(i))− rank(M(i+1))

≥ rank(M(i))− rank
([

M(i)
i · · · M(i)

n−1

])
(2.113)

= δ(i)n (M) (2.114)

for 1 ≤ i ≤ s− 1, where (2.113) holds since

S(M(i+1)
j) ⊂ S

([
M(i)

i · · · M(i)
j−1

])
⊂ S

([
M(i)

i · · · M(i)
n−1

])
.

for every i+ 1 ≤ j ≤ n. By using (2.112) and (2.114), we have

54

srank(M) = sρ(1)(M)

=

s∑
j=1

ρ(j) +

s∑
j=2

j−1∑
i=1

(
ρ(i+1)(M)− ρ(i)(M)

)

≥
n∑

i=1

rank
(

M(1)
i,i

)
−

n∑
i=s

T̄
(s)
i +

s∑
j=2

j−1∑
i=1

δ(i)n (M) (2.115)

≥
n∑

i=1

rank
(

M(1)
i,i

)
−

n∑
i=s

T̄
(s)
i +

s∑
j=2

max
(
0,M(1)

n,n − T̄ (j−1)
n

)
(2.116)

≥
n∑

i=1

rank
(

M(1)
i,i

)
−

n∑
i=s

T̄
(s)
i + max

0, (s− 1)M(1)
n,n −

s∑
j=2

T̄ (j−1)
n


where (2.115) follows from (2.112) and (2.114), and (2.116) follows from (2.96).

2.4 An Outer Bound of Linear and Exact-Repair Co-

operative Regenerating Codes

In this section, we derive the outer bound on the file size of linear cooperative

regenerating codes (1.3). First of all, for a given vector l = (l1, · · · , lg), if s = 1,

(1.3) is reduced to

B ≤
g∑

h=1

lh min
(
α,∆l

h

)
=

g∑
h=1

lh min
(
α, (d− k +

h∑
t=1

lt)β1 + (r − lh)β2
)
, (2.117)

55

which is equivalent to (2.78). Thus, we need to show that (1.3) holds for

2 ≤ s ≤ g.

The proof of Theorem 1 is almost similar to the proof of (1.1) in Section

2.2. After constructing Hrepair that satisfies S(HT
repair) ⊂ S(HT), we convert

the lower bound of rank(Hrepair) to an upper bound of B.

2.4.1 Construction of Hrepair

For a given arbitrary vector l = (l1, · · · , lg) which satisfies 1 ≤ lh ≤ r and∑g
h=1 lh = k = d, construct Hrepair in a similar way as in Section 2.2.1. The

only difference is that Nh must be chosen under stricter conditions. For 1 ≤

h ≤ g, Nh is defined as

Nh = arg max
Nh⊂[

∑h−1
t=0 lt],

|Nh|=r−lh

h−1∑
t=0

I[Hh,t = 0], (2.118)

where I[·] denotes the indicator function, which has 1 as its value if the state-

ment inside brackets is true, and has value of 0, otherwise. Thus, the ele-

ments of Nh must be selected to maximize the number of zero matrices out of

Hh,0, · · · ,Hh,h−1.

For example, N1, · · · , N4 of Hrepair described in Figure 2.2 satisfy (2.118).

For h = 1, there is no Nh that makes H1,0 a zero matrix. For the cases of h = 2

and h = 3, H2,1 = 0 and H3,1 = 0, since 7 ∈ N2 and 7 ∈ N3. We chose N4 to

satisfy {7, 8, 9} ⊂ N4 in order to make H4,2 and H4,3 zero matrices.

56

2.4.2 Lower Bound of rank(Hrepair)

For a given vector l, Hrepair has (g + 1)2 submatrices. We use Lemma 2 to

derive the lower bound of rank(Hrepair) for 2 ≤ s ≤ g. Note that the Lemma 2

is extended from Theorem 3.3 of [23] (See Remark 5).

As discussed in (2.43), g + 1 diagonal submatrices H0,0,H1,1, · · · ,Hg,g are

identity matrices. Thus, Hrepair satisfies Conditions (i) and (ii) of Lemma

2, and can be used for the matrix M in Lemma 2. The lower bound of

rank(Hrepair) derived by using (2.93) for 2 ≤ s ≤ g is expressed as

s(s+ 1)

2
rank(Hrepair)

≥ s(n− k)α+

g∑
h=1

max (0, (s− h)lhα, slhα− Th) , (2.119)

where

Th =

h−1∑
t=0

rank(Hh,t). (2.120)

For a given vector l, the terms in the right hand side of (2.119) are fixed except

for the term Th. Thus, minimizing Th is important for tighter lower bound.

For 1 ≤ h ≤ g, [Hh,0 · · · Hh,h−1] = ARh

R
′
h

[∑h−1
t=1 lt

] has lh
∑h−1

t=0 lt numbers of

α×α components. It is important to note that some part of [Hh,0 · · · Hh,h−1],

ARh

R
′
hNh

is a zero matrix, since entries of ARh

R
′
hNh

are contained in the lower

triangular entries of Irα (see Remark 4).

As shown in (2.51)-(2.52), if j ∈
[∑h−1

t=0 lt

]
\Rh, Aij is then the sum of two

57

components P′
ij and T′

ij , as

Aij = P′
ij + T′

ij (2.121)

=

Pij +
∑

m∈R′
h\{i}

Tij,m

+
∑

m∈Rh\R
′
h

Tij,m (2.122)

For the case of j ∈ Nh, where Aij is a zero matrix, if we define Aij = P′
ij =

T′
ij = 0, then Aij = P′

ij + T′
ij holds for every case of j ∈

[∑h−1
t=0 lt

]
. For

0 ≤ t ≤ h− 1, Hh,t is also the sum of two components, as

Hh,t = P′

R
′
hR

′
t
+ T′

R
′
hR

′
t
. (2.123)

The upper bounds of
∑h−1

t=0 rank(P′

R
′
hR

′
t

) can be derived similarly to (2.54)-(2.59)

as

h−1∑
t=0

rank(P′

R
′
hR

′
t
) ≤

∑
j∈Lh

rank(P′

R
′
hj
) (2.124)

≤ lh(d− k +

h∑
t=1

lt)β1, (2.125)

58

The upper bound of
∑h−1

t=0 rank(T′

R
′
hR

′
t

) can be derived as

h−1∑
t=0

rank(T′

R
′
hR

′
t
) ≤

h−1∑
t=0

rank(T′

R
′
hR

′
t
)I[Hh,t = 0] (2.126)

≤
h−1∑
t=0

rank(T′

R
′
h([n]\Rh)

)I[Hh,t = 0] (2.127)

= chrank(T′

R
′
h([n]\Rh)

) (2.128)

= ch
∑
i∈R′

h

∑
m∈Nh

rank(Ti([n]\Rh),m) (2.129)

≤ ch|R
′
h||Nh|β2 (2.130)

= chlh(r − lh)β2, (2.131)

where (2.129) follows from the fact that

bh := max
A⊂{0,··· ,h−1},∑

t∈A lt≤r−lh

|A|. (2.132)

=
h−1∑
t=0

I[Hh,t 6= 0], (2.133)

= h−
h−1∑
t=0

I[Hh,t = 0], (2.134)

and ch := h− bh for 1 ≤ h ≤ g.

By combining (2.125) and (2.53), for 1 ≤ h ≤ g, Th =
∑h−1

t=0 rank(Hh,t) is

59

upper bounded by

Th ≤
h−1∑
t=0

rank(P′

R
′
hR

′
t
) + rank(T′

R
′
hR

′
t
)

≤ lh(d− k +

h∑
t=1

lt)β1 + chlh(r − lh)β2

= lh∆
l
h, (2.135)

where ∆l
h was defined in (1.4). By applying this to (2.119), the lower bound of

rank(Hrepair) can be derived as

rank(Hrepair)

≥ 2(n− k)α

s+ 1
+

2

s(s+ 1)

g∑
h=1

lh max
(
0, (s− h)α, sα−∆l

h

)
. (2.136)

2.4.3 Derivation of the Proposed Outer Bound

By using the relation rank(H) = nα − B, the lower bound of rank(H) can be

converted to an upper bound of B as

B = nα− rank(H)

≤ nα− rank(Hrepair)

≤ nα− 2

s+ 1
(n− k)α− 2

s+ 1

g∑
h=1

lhα

− 2

s(s+ 1)

g∑
h=1

lh max
(
−sα,−hα,−∆l

h

)
≤ s− 1

s+ 1
nα+

2

s(s+ 1)

g∑
h=1

lh min
(
sα, hα,∆l

h

)
. (2.137)

60

Remark 6. We only defined (1.3) for the case of 2 ≤ s ≤ g, even if (2.93)

holds for every positive integer s ≥ 1. In fact, we can also derive (1.3) for s = 1

and s ≥ g + 1 in the same manner described in this section, but we do not

have to use them. When s = 1, this is because the functional repair bound

(1.1) is tighter than (1.3) with s = 1. The reason why we did not consider

s ≥ g+1 is that every lower bound of rank(Hrepair) from (2.93) for s ≥ g+1 is

always smaller than the lower bound obtained for s = g, since every diagonal

submatrix of Hrepair is square and nonsingular.

To verify this, we will show that for a matrix M which has n2 submatrices

and satisfies Conditions (i) and (ii) of Lemma 2, if Mi,i is square and nonsingular

for every i ∈ [n] , then the lower bound of rank(M) given in (2.93) decreases as

s increases when s ≥ n. For a given i ∈ [n], if Mi,i is nonsingular, it must be

that

rank(Mi,i) ≥ rank(Mi,j) and rank(Mi,i) ≥ rank(Mj,i)

for every j ∈ [n] \ i. (2.138)

According to (2.93), for a given s ≥ n− 1, rank(M) is lower bounded by

2

s(s+ 1)

n∑
i=1

(srank(Mi,i)− Ti) ,

61

where the max operation disappeared since

(i− 1)rank(Mi,i) ≥
i−1∑
j=1

rank(Mi,j) = Ti, (2.139)

which follows from (2.138). The difference between the lower bounds for s = s0

and s = s0 + 1 is

2

s0(s0 + 1)

n∑
i=1

(s0rank(Mi,i)− Ti)

− 2

(s0 + 1)(s0 + 2)

n∑
i=1

((s0 + 1)rank(Mi,i)− Ti)

=
2

s(s+ 1)(s+ 2)

n∑
i=1

(srank(Mi,i)− 2Ti) . (2.140)

This value is always positive, since

n∑
i=1

(srank(Mi,i)− 2Ti)

≥
n∑

i=1

((n− 1)rank(Mi,i)− 2Ti) (2.141)

= (n− 1)
n∑

i=1

rank(Mi,i)− 2
n∑

i=2

i−1∑
j=1

rank(Mi,j)

= (n− 1)
n∑

i=1

rank(Mi,i)

−
n∑

i=2

i−1∑
j=1

rank(Mi,j)−
n−1∑
j=1

n∑
i=j+1

rank(Mi,j)

≥ 0, (2.142)

where (2.141) follows from s ≥ n− 1 and (2.142) follows from (2.138).

62

2.5 Evaluation of the Proposed Outer Bound

In this section, we discuss the performance of the proposed outer bound of

Theorem 1 by evaluating it on the (α, γ)-plane for various parameters. Given

a vector l and an integer s, the right side of (2.137) is a function of (α, β1, β2)

since ∆l
h is a fucntion of β1 and β2. For a fixed set of parameters (α, β1, β2), we

can obtain the least upper bound of B by minimizing the right side of (2.137)

over l ∈ L and 1 ≤ s ≤ g. As a result, we have

B ≤ min
l∈L

1≤s≤g

{
s− 1

s+ 1
nα+

2

s(s+ 1)

g∑
h=1

lh min
(
sα, hα,∆l

h

)}
:= B̂(α, β1, β2), (2.143)

where we defined B̂(α, β1, β2) as the least upper bound of B, and L is the

set of all vectors l = {l1, · · · , lg} such that 1 ≤ lh ≤ r for every h ∈ [g] and∑g
h=1 lh = k. For a given value of γ, by maximizing B̂(α, β1, β2) over β1 and β2

with γ = dβ1 + (r − 1)β2, B̂(α, β1, β2) is transformed into a function of (α, γ)

as

B ≤ max
dβ1+(r−1)β2=γ

B̂(α, β1, β2). (2.144)

In Figures 2.3 and 2.4, (α, γ) values satisfying

1 = max
dβ1+(r−1)β2=γ

B̂(α, β1, β2) (2.145)

are plotted for various (n, k, d, r). The set of the points forms a piece-wise linear

curve on the (α, γ)-plane.

63

Figure 2.3: Performance comparison between the proposed outer bound (The-

orem 1) and the cutset bound (1.1) for different values of r when n = 14 and

d = k = n− r.

64

Figure 2.4: Performance comparison between the proposed outer bound (The-

orem 1) and the cutset bound (1.1) for different values of k when r = 2 and

d = k = n− r.

65

Figure 2.5: Performance comparison between the proposed outer bound (The-

orem 1) and the cutset bound (1.1) for different values of d when r = 2 and

k = 10.

66

In Figure 2.3 we plot the performance of the bounds for different r when

n = k + r = 14. The (α, γ) points in the region above the cutset bound and

under the proposed bound are not achievable with the exact repair model, but

achievable with the functional repair model. This region becomes smaller as r

increases. Figure 2.4 illustrates the piece-wise linear curves for different k when

fixed r = 2, and Figure 2.5 includes the (α, γ) curves for different values of d

when r = 2 and k = 10. It is observed that for fixed r the proposed outer

bound becomes tighter as k increases and d − k decreases, compared to the

cutset bound.

To sum up, the proposed outer bound stated in Theorem 1 is effective if r

and d are small, or k is large, when compared with the functional-repair cutset

bound. This is because the lower bound of rank(Hh,t) becomes loose when it is

approximated by the sum of ranks of its α×α components. It is observed that

the lower bound becomes tighter if r is small compared to the value of n.

67

Chapter 3

An Improved Outer Bound for the Case of Single

Node Repair

3.1 Symmetric Exact-Repair codes

In this chapter, we restrict our discussion to the case of single node repair where

r = 1. The proposed outer bound on the storage-bandwidth tradeoff of single-

repair codes (The cooperative regenerating codes with r = 1 are simply called

regenerating codes.), which was stated in Theorem 2 and 3, is tighter than the

r = 1 case of the first outer bound discussed in Chapter 2. This improvement

is motivated by the storage node symmetry of exact repair codes, which was

first discussed by Tian in [18].

Symmetric regenerating codes are defined to be regenerating codes that are

69

invariant to index permutation. When we discuss about outer bounds on the

S-B tradeoff or conditions the regenerating codes must satisfy, it is sufficient

to consider symmetric regenerating codes, since there is no operating point

(α, β), which can only be achieved by non-symmetric regenerating codes. Let

C be a set of codewords of an non-symmetric regenerating code operating at

(α, β). Suppose a permutation code Cπ where the indices of nodes (1, 2, · · · , n)

is permuted into another order of n integers π [(1, 2, · · · , n)]. Let C′ be a new

code generated by space-sharing n! possible Cπs with the same fraction. Then

C′ can be regarded as a symmetric code operating at the same point (α, β).

Even though the size of the alphabet (e.g. finite fields) might become larger, it

is not an interested problem when we want to verify the existence of such codes.

Note that for a symmetric regenerating code, the amount of any information

measure (e.g. entropy, rank) is not dependent on the particular choice of nodes,

but only on the number of nodes.

3.2 Conditions for Parity Check Matrices of Single

Repair Codes

Lemma 4 below gives some conditions that the parity check matrix H of an

(n, k, d)-regenerating code must satisfy if the code is an (nα,B)-linear code.

70

Lemma 4 is analogous to Lemma 1 in Chapter 2.

Lemma 4. The parity check matrix H of an (n = d+1, k, d)-linear regenerating

code satisfy the following two conditions (i) and (ii).

(i) A (nα − B)× (n− k)α matrix constructed by collecting arbitrary n− k

thick columns of H has full rank (n− k)α.

(ii) For an integer i ∈ [n], there exists an α× nα matrix Ĥi that satisfies the

following conditions (a) and (b).

(a) Each of α× α submatrices of Ĥi satisfies
Ĥh

i = Iα, if h = i,

rank(Ĥh
i) ≤ β, if h ∈ D,

(3.1)

where Ĥi =
[
Ĥ1

i · · · Ĥn
i

]
.

(b) S(ĤT
i) ⊂ S(HT).

Proof. Consider n code symbols c1, · · · , cn such that

c = (c1 c2 . . . cn) , (3.2)

where each symbol is a row vector of length α. For A = {a1, a2, · · · , a|A|}, a

subset of [n], define cA as
(

ca1 ca2 . . . ca|A|

)
, and let GA and HA be the ma-

trices formed by combining thick columns of G and H whose indices correspond

to the elements of A.

71

Condition (i) can be derived from the data collection property of regener-

ating codes. Let K be a subset of [n] with k elements and K̄ = [n] \K. s = 0

is the unique vector satisfying sHT
K̄

= 0, since c = 0 is the unique codeword

satisfying cK = 0, according to the data collection property. This means every

columns of HT
K̄

are linearly independent.

Condition (ii) is derived from the node repair property. Suppose a node

repair process where d helper nodes whose indices correspond to D = [n]\{i} =

{l1, · · · , ld} repair node i (6∈ D). Each helper node produces β symbols by

combining its own α symbols and transmits them to node i. Let cjΦji be

the β symbols node i downloaded from node j ∈ D, where Φji is the α × β

encoding matrix. Node i can obtain ci by combining cl1Φl1i, · · · , cldΦldi, and

this procedure is expressed by

ci =
d∑

j=1

(cljΦilj)Ψlji, (3.3)

where Ψl1i, Ψl2i, · · · ,Ψldi are β × α matrices. Define Ĥi =
[
Ĥ1

i · · · Ĥn
i

]
as

Ĥh
i =


Iα, if h = i,

−ΨT
tiΦ

T
it, if h ∈ D.

(3.4)

Ĥi satisfies (3.1), since the rank of ΦiljΨlji is less than β. It can be shown that

72

every row of Ĥi belongs to the row space of H by verifying

cĤT
i,D =

n∑
j=1

cj(Hj
i,D)

T

= ciIα +

d∑
j=1

clj (−ΨT
lji
ΦT
ilj
)T

= ci −
d∑

j=1

cljΦiljΨlji

= 0 (3.5)

for any codeword c.

As stated in the proof of Lemma 4, conditions (i) and (ii) are derived from

two properties of regenerating codes, data collection and node repair, respec-

tively. The following corollary can be regarded as a modification of condition

(i) of Lemma 4.

Corollary 1. Suppose an (n, k, d)-linear regenerating code, and let H be its

parity check matrix. Let K be a subset of [n], and i be an element of [n] such

that |K| = k and i /∈ K. For arbitrarily chosen (i,K), there exists an α × nα

matrix Ĥi,K that satisfy the following conditions (a) and (b).

73

(a) Each of α× α submatrices of Ĥi,K satisfies

Ĥt
i,K = Iα, if t = i,

rank(Ĥt
i,K) ≤ α, if t ∈ K,

Ĥt
i,K = 0, otherwise,

(3.6)

where Ĥi,K =
(

Ĥ1
i,K · · · Ĥn

i,K

)
.

(b) S(ĤT
i,K) ⊂ S(HT).

Proof. Given a subset of [n], K = {l1, · · · , lk}, m can be obtained from cK

based on the data collection property. This procedure is expressed by

m =

k∑
t=1

cltΘlt , (3.7)

where Θl1 , · · · ,Θlk are α × B matrices. Consequently, this implies that the

symbols of ci can also be expressed by linear combinations of cK as

ci = mGi

=

k∑
t=1

cltΘltGi. (3.8)

Define Ĥi,K =
(

Ĥ1
i,K · · · Ĥn

i,K

)
where the submatrices satisfy

Ĥt
i,K =



Iα, if t = i,

−GT
i Θ

T
t , if t ∈ K,

0, otherwise.

(3.9)

74

It can be easily verified that Ĥi,K satisfies the condition (a). By (3.8), for every

codeword c,

cĤT
i,K = ci −

k∑
t=1

cltΘltGi

= 0 (3.10)

This implies the condition (b) is also satisfied, since the row space of Ĥi,K is

orthogonal to S(GT) and belongs to S(HT).

3.3 Construction of Hsingle

In this section, we shall define a block matrix matrix Hsingle which satisfies

S(HT
single) ⊂ S(H), (3.11)

as Hrepair used in Chapter 2 satisfies

S(HT
repair) ⊂ S(HT). (3.12)

Hsingle is made up of the rows of the parity check matrix H of the cor-

responding regenerating codes, as Hrepair does. However, there is a notable

difference between Hsingle and Hrepair in combining direction of the rows of

H. While Hrepair is constructed by combining the rows of H vertically as in

(2.39), Hsingle uses the rows of H as its columns. The column space of Hsingle

75

is contained in the column space of H as (3.11), where the column space of

Hrepair is contained in the columns space of H. More specifically, Hsingle is

constructed by combining α × nα matrices Ĥi and Ĥi,K horizontally given by

Lemma 4 and Corollary 1.

Let the quotient and remainder when n (= d+1) is divided by τ (= d+1−k)

be Q and R, respectively. i.e.,

n = d+ 1 = Qτ +R, 0 ≤ R ≤ τ. (3.13)

In this section, Q kinds of submatrix patterns will be considered. For 1 ≤ q ≤ Q,

Let uq be a vector of length g = d− q(τ − 1) + 1 such that

uq = (1, · · · , 1︸ ︷︷ ︸
f=d−qτ+1

, τ, · · · , τ︸ ︷︷ ︸
q

). (3.14)

The elements of uqα can be regarded as a pattern of widths of thick columns

and rows of Hsingle. The sum of all elements of uq always equals n. Specifically,

if uq = (u1, · · · , ug), nα columns of Hrepair are partitioned into g (= f + q =

d−q(τ −1)+1) thick columns, each of which consists of u1α, · · · , ugα columns,

respectively. Let the thick rows of Hsingle be partitioned in the same way. In

this manner, Hsingle is broken into g2 submatrices H1,1, · · · ,Hg,g as

76

Hsingle =



H1,1 H1,2 . . . H1,g

H2,1 H2,2 . . . H2,g

...
...

Hg,1 Hg,2 . . . Hg,g


= [H1 H2 · · ·Hg], (3.15)

where Hh =
[
HT

1,h HT
2,h · · · HT

g,h

]T
is the hth thick column of Hsingle for

1 ≤ h ≤ g. Each of the g thick columns of Hsingle is defined as

Hh =


ĤT

h , if 1 ≤ h ≤ f,

H1
h − H2

h if f + 1 ≤ h ≤ g,

(3.16)

where for f + 1 ≤ h ≤ g, H1
h and H2

h are defined as

H1
h =

[
ĤT

f1
h

· · · ĤT
fτ
h

]
and

H2
h =

[
ĤT

f1
h,[d+1]\{f1

h,··· ,f
τ
h}

· · · ĤT
fτ
h ,[d+1]\{f1

h,··· ,f
τ
h}

]

×



0 0 0 · · · 0

Ĥ1
f2
h

0 0 · · · 0

Ĥ1
f3
h

Ĥ2
f3
h

0 · · · 0

...
...

Ĥ1
fτ
h

Ĥ2
fτ
h

· · · Ĥτ−1
fτ
h

0



T

,

77

where f j
h := f + (q − 1)τ + j = (d− qτ + 1) + (q − 1)τ + j for 1 ≤ j ≤ τ . Note

that for f + 1 ≤ h ≤ g, the two components of Hh, H1
h and H2

h, originate from

Ĥi and Ĥi,K given in Lemma 4 and Corollary 1, respectively.

It can be easily verified that the every diagonal submatrices of Hsingle is

nonsingular by using the conditions of Ĥi and Ĥi,K stated in 4 and Corollary

1. For 1 ≤ h ≤ f

Hh,h =
(

Ĥh
h

)T
= Iα, (3.17)

and for f + 1 ≤ h ≤ g,

Hh,h =



Iα Ĥ2
f1
h

Ĥ3
f1
h

· · · Ĥτ
f1
h

Ĥ1
f2
h

Iα Ĥ3
f2
h

· · · Ĥτ
f2
h

Ĥ1
f3
h

Ĥ2
f3
h

Iα
. . . Ĥτ

f3
h

...
...

Ĥ1
fτ
h

Ĥ2
fτ
h

· · · Ĥτ−1
fτ
h

Iα



T

−



0 0 0 · · · 0

Ĥ1
f2
h

0 0 · · · 0

Ĥ1
f3
h

Ĥ2
f3
h

0 · · · 0

...
...

Ĥ1
fτ
h

Ĥ2
fτ
h

· · · Ĥτ−1
fτ
h

0



T

=



Iα Ĥ2
f1
h

Ĥ3
f1
h

· · · Ĥτ
f1
h

0 Iα Ĥ3
f2
h

· · · Ĥτ
f2
h

0 0 Iα
. . . Ĥτ

f3
h

...
...

0 0 · · · 0 Iα



T

(3.18)

78

Thus,

rank(Hh,h) =


α if 1 ≤ h ≤ f,

τα if f + 1 ≤ h ≤ g,

(3.19)

Additionally, we can verify the rank of each lower-triangular submatrix (Hh,t

with h > t) is upper bounded by

rank(Hh,t) ≤



β if 1 ≤ t ≤ f and 2 ≤ h ≤ f,

τβ if 1 ≤ t ≤ f and f + 1 ≤ h ≤ g,

R(α, β) if f + 1 ≤ t ≤ g,

(3.20)

where the definition of R(α, β) is given by (1.7).

79

3.4 Derivation of Two Sub-Bounds

3.4.1 Proof of Theorem 2

Assume the matrix Hsingle is given for an arbirary 1 ≤ q ≤ Q = bd+1
τ c. For a

given value of p, define a block matrix Psingle with (g − p)2 submatirces as

Psingle =



H1+p,1+p H1+p,2+p . . . H1+p,g

H2+p,1+p H2+p,2+p . . . H2+p,g

...
...

Hg,1+p Hg,2+p . . . Hg,g



=



P1,1 P1,2 . . . P1,g−p

P2,1 P2,2 . . . P2,g−p

...
...

Pg−p,1 Pg−p,2 . . . Pg−p,g−p


= [P1 P2 · · ·Pg−p]

Since p ≤ k − (q − 1)τ , by using (3.19) and (3.20), we have

rank(Ph,h) =


α if 1 ≤ h ≤ f − p,

τα if f − p+ 1 ≤ h ≤ g − p,

(3.21)

80

and

rank(Ph,t) ≤



β if 1 ≤ t ≤ f − p and 2 ≤ h ≤ f − p,

τβ if 1 ≤ t ≤ f − p and f − p+ 1 ≤ h ≤ g − p,

R(α, β) if f − p+ 1 ≤ t ≤ g − p,

(3.22)

Since every diagonal submatrices of Psingle is nonsingular, we can utilize

the properties discussed in Section 2.2. Substituting Psingle for M of Lemma

3, we have

trank(Psingle) ≥
g−p∑
i=1

rank(Pi,i)−
g−p∑
i=t

T̄
(t)
i (Psingle)

+max

(
0, (t−1)rank(Pg−p,g−p)−

t−1∑
i=1

T̄
(i)
g−p(Psingle)

)
,(3.23)

for 1 ≤ t ≤ g − p− 1. The summation of (3.23) for 1 ≤ t ≤ s yields that

s(s+ 1)

2
rank(Psingle) ≥ s

g−p∑
i=1

rank(Pi,i)−
s∑

t=1

g−p∑
i=t

T̄
(t)
i (Psingle)

+
s∑

t=1

max

(
0, (t− 1)rank(Pg−p,g−p)−

t−1∑
i=1

T̄
(i)
g−p(Psingle)

)
,

≥ s(k + τ − p)α−
g−p∑
i=1

T
(1)
i (Psingle)

+
s∑

t=1

max
(
0, (t− 1)τα− T

(1)
g−p(Psingle)

)
, (3.24)

where (3.24) follows from (2.85) and (3.21). By using (3.22),
∑g−p

i=1 T
(1)
i (Psingle)

81

and T
(1)
g−p are upper bounded as

g−p∑
i=1

T
(1)
i (Psingle) ≤

g−p∑
h=2

h−1∑
t=1

rank(Ph,t)

≤ 1

2
(k − p− (q − 1)τ)(k − p+ (q + 1)τ − 1)β

+
q(q − 1)

2
R(α, β). (3.25)

and

T
(g−p)
i (Psingle) ≤ (q − 1)R(α, β) + τ(k − p− (q − 1)τ)β. (3.26)

By substituting (3.25), (3.26) and using the fact that

B = nα− rank(H)

≤ nα− rank(Hsingle)

≤ nα− rank(Psingle), (3.27)

we can find the upper bound of B as

s(s+ 1)

2
B ≤ s(s− 1)

2
kα+ spα+

q(q − 1)

2
R(α, β)

+
1

2
(k − p− (q − 1)τ)(k − p+ (q + 1)τ − 1)β

+
s∑

t=2

min ((t− 1)τα, (q − 1)R(α, β) + τ(k − p− (q − 1)τ)β)) ,

(3.28)

which is equivalent to (1.6).

82

3.4.2 Proof of Theorem 3

Assume that Psingle is constructed for q = 1. Since q = 1 and g = k + 1, we

have

rank(Ph,h) =


α if 1 ≤ h ≤ k − p,

τα if h = k − p+ 1,

(3.29)

and

rank(Ph,t) ≤ β (3.30)

for 1 ≤ t ≤ k − p and t < h ≤ k − p. For the case of h = k − p + 1, Ph,t is

defined as

Ph,t =
[
Ĥk+1

t+p · · · Ĥd+1
t+p,

]T
(3.31)

for 1 ≤ t ≤ k.

By substituting Psingle for M of Lemma 3, the lower bound of rank(Psingle)

is expressed as

trank(Psingle) ≥
k−p+1∑
i=1

rank(Pi,i)−
k−p+1∑
i=t

T̄
(t)
i (Psingle)

+max

(
0, (t− 1)rank(Pk−p+1,k−p+1)−

t−1∑
i=1

T̄
(i)
k−p+1(Psingle)

)
,

≥ (k + tτ − p)α−
k−p∑
i=t

T̄
(t)
i (Psingle)−

t∑
i=1

T̄
(i)
g−p(Psingle), (3.32)

for 1 ≤ t ≤ k−p. By using the relation (3.27), the lower bound of trank(Psingle)

83

can be converted to an upper bound of B as

tB ≤ ((t− 1)k + p)α+

k−p∑
i=t

T̄
(t)
i (Psingle) +

t∑
i=1

T̄
(i)
k−p+1(Psingle)

≤ ((t− 1)k + p)α+

k−p∑
i=t

T̄
(t)
i (Psingle) + T̄

(1)
k−p+1(Psingle) (3.33)

≤ ((t− 1)k + p)α+

k−p∑
i=t

T̄
(t)
i (Psingle) + τ(k − p)β (3.34)

where (3.33) follows from (2.85).

For t = 1, (3.34) is reduced to

B ≤ pα+

k−p∑
i=1

T̄
(1)
i (Psingle) + T̄

(i)
k−p+1(Psingle)

= pα+

k−p∑
i=1

T̄
(1)
i (Psingle) + rank ([Pk−p+1,1 · · · Pk−p+1,k−p]) (3.35)

= pα+

k−p∑
i=1

T̄
(1)
i (Psingle)

+rank





(
Hk+1

1+p,[d+1]\{1+p}

)T
. . .

(
Hk+1

k,[d+1]\{k}

)T
...(

Hd+1
1+p,[d+1]\{1+p}

)T
. . .

(
Hd+1

k,[d+1]\{k}

)T



 (3.36)

≤ pα+

k−p∑
i=1

T̄
(1)
i (Psingle) (3.37)

+τ rank
([(

Hk+1
1+p,[d+1]\{1+p}

)T
· · ·

(
Hk+1

k,[d+1]\{k}

)T])
(3.38)

≤ pα+

(
2τ

k − p− 1
+ 1

) k−p∑
i=1

T̄
(1)
i (Psingle) (3.39)

where (3.38) and (3.39) follow from the property of symmetric regenerating

84

codes. The summation of (3.34) for 2 ≤ t ≤ s yiels that(
s(s+ 1)

2
− 1

)
B ≤

(
s(s− 1)k

2
+ (s− 1)p

)
α+ (s− 1)τ(k − p)β

+
s∑

t=2

k−p∑
i=t

T̄
(t)
i (Psingle). (3.40)

Since

k−p∑
i=1

T̄
(1)
i (Psingle) +

s∑
t=2

k−p∑
i=t

T̄
(t)
i (Psingle) =

s∑
t=1

k−p∑
i=t

T̄
(t)
i (Psingle)

≤
k−p∑
i=t

T
(1)
i (Psingle) (3.41)

≤ 1

2
(k − p)(k − p− 1)β (3.42)

where (3.41) follows from (2.85), by adding (3.39) and
(

2τ
k−p−1 + 1

)
times of

(3.40), we have((
s(s+ 1)

2
− 1

) (
2τ

k − p− 1
+ 1

)
+ 1

)
B

≤
(

2τ

k − p− 1
+ 1

)(
s(s− 1)

2
k + (s− 1)p

)
α+ pα

+

(
2τ

k − p− 1
+ 1

)
(s− 1)τ(k − p)β

+

(
2τ

k − p− 1
+ 1

)(k−p∑
i=1

T̄
(1)
i (Psingle) +

s∑
t=2

k−p∑
i=t

T̄
(t)
i (Psingle)

)

≤
((

2τ

k − p− 1
+ 1

)(
s(s− 1)

2
k + (s− 1)p

)
+ p

)
α

+

(
2τ

k − p− 1
+ 1

)(
(s− 1)τ(k − p) +

1

2
(k − p)(k − p+ 1)

)
β,

(3.43)

which is equivalent to (1.8).

85

3.5 Performance Evaluation

In this section, we provide a few examples to illustrate how the new outer

bounds are tight compared to the other existing outer bounds and the cutset

bound (1.2). In Figure 3.1 and 3.2, we have plotted the performance of the

proposed outer bounds for different k when n = 11 and d = 10, together with

the cutset bound and two other existing outer bounds [20, 35]. In Figure 3.1,

the tradeoff curves are illustrated on the α−γ plane for the case of k = 4, 5, 6, 7.

The sub-bound 2 (Theorem 3) performs better than the other ones, while in

small region near the MSR points it is worse than the outer bound proposed

in [20]. On the other hands, In Figure 3.2, we can find that the performance of

sub-bound 1 (stated in Theorem 2) becomes better as k gets larger.

In order to check their difference clearer, we provide Figure 3.3 and 3.4,

where the cases of extremely low and high rates are described. In Figure 3.3,

the examples of extremely high rates is illustrated. As k/n goes to 1 with

fixed τ = n − k = 3, the sub-bound 1 in Theorem 2 and the existing inner

bound [24] converge to the same point. In addition, the convergence point of

the two curves is definitely located far away from the functional repair S-B

tradeoff. This shows the existence of performance difference between the exact

and functional repair model. In Figure 3.4, the examples of extremely low rates

is illustrated. For a given k = 10, as n gets larger, the sub-bound 2 stated in

86

Theorem 3 looks converging to the space-sharing line, which is the trivial inner

bound.

To summarize, in high rates where k/n ∼= 1, the sub-bound 1 is superior

than others, and in low rates when k is much smaller than n, the sub-bound 2

is tighter than other bounds. In the both of the extreme low and high rates,

each bound gets closer to the optimal S-B tradeoff.

87

Figure 3.1: Comparison of functional-repair storage-bandwidth tradeoff (1.2),

the outer bounds of [20,35], and the proposed outer bounds for various (n, k, d)

values. Given fixed n = d+ 1 = 12, k = 4, 5, 6, and 7 is used.

88

Figure 3.2: Comparison of functional-repair storage-bandwidth tradeoff (1.2),

the outer bounds of [20,35], and the proposed outer bounds for various (n, k, d)

values. Given fixed n = d+ 1 = 12, k = 8, 9, 10, and 11 is used.

89

Figure 3.3: Comparison of several bounds on the exact-repair S-B tradeoff in

extremely high rates. Given fixed n− k = 3, n = 20, 30, 50, and 100 is used.

90

Figure 3.4: Comparison of several bounds on the exact-repair S-B tradeoff in

extremely low rates. Given fixed k = 10, n = 20, 30, 50, and 100 is used.

91

Chapter 4

Conclusion

• We proposed an outer bound on the storage-bandwidth tradeoff of linear

exact-repair cooperative regenerating codes. The proposed bound is a

generalization of the d = k = n− 1 case (i.e., r = 1) proposed in [23]. In

addition, we proposed the conditions that the parity check matrix H of

a linear code must satisfy if the code is a cooperative regenerating code.

Although the proposed outer bound is not always effective in arbitrary

(n, k, d, r) when compared with the cutset bound (1.1), it becomes more

effective as k increases, or r and d− k decrease.

• The second contribution is to propose a new outer bound on the S-B

tradeoff of exact-repair linear regenerating codes, where we assumed the

case of single repair (r = 1). The proposed outer bound for single-repair

93

codes consists of two sub-bounds. The two sub-bounds have different

tendency according to the code rate k/n. One sub-bound is more effective

in high rates (k/n > 1
2), but the other sub-bound becomes tighter when

the code rate is low (k/n < 1
2). The proposed outer bound asymptotically

gets closer to the optimal S-B tradeoff at extreme high or low rates, since

the sub-bound 1 becomes closer to the existing inner bound proposed

in [24] at extremely high rates and the sub-bound 2 becomes closer to the

space-sharing inner bounds at extremely low rates.

94

Bibliography

[1] M. Sathiamoorthy, M. Asteris, D. Papailiopoulos, A. G. Dimakis,

R. Vadali, S Chen, and D. Borthakur, “XORing elephants: Novel erasure

codes for big data,” in Proc. Very Large Data Based (VLDB) Endowment,

vol. 6, no. 5, pp. 325-336, Mar. 2013.

[2] B. Calder, J. Wang, A. Ogus et al., “Windows Azure Storage: A highly

available cloud storage service with strong consistency,” in Proc. ACM

Symposium on Operating Systems Principles (SOSP), Oct. 2011.

[3] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and K. Ram-

chandran, “Network coding for distributed storage systems,” IEEE Trans.

Inf. Theory, vol. 56, no. 9, pp. 4539-4551, Sep. 2010.

[4] Y. Hu, Y. Xu, X. Wang, C. Zhan, and P. Li, “Cooperative recovery of

distributed storage systems from multiple losses with network coding,” in

Proc. IEEE Int. Conf. on Computer Commun. (INFOCOM), May 2007.

95

[5] X. Wang, Y. Xu, Y. Hu, and K. Ou, “MFR: Multi-loss flexible recovery in

distributed storage systems,” in Proc. IEEE Int. Conf. on Comm. (ICC),

Capetown, South Africa, May 2010.

[6] A. Kermarrec, N. Le Scouarnec, and G. Straub, “Repairing multiple fail-

ures with coordinated and adaptive regenerating codes,” in Proc. Interna-

tional Symposium on Network Coding (NetCod 2011), July 2011.

[7] K. W. Shum and Y. Hu, “Cooperative regenerating codes,” IEEE Trans.

Inf. Theory, vol. 59, no. 11, pp. 7229-7258, Nov. 2013.

[8] C. Suh and K. Ramchandran, “Exact-repair MDS code construction using

interference alignment,” IEEE Trans. Inf. Theory, vol. 57, no. 3, pp. 1425-

1442, Mar. 2011.

[9] K. V. Rashmi, N. B. Shah, and P. V. Kumar, “Optimal exact-regenerating

codes for distributed storage at the MSR and MBR points via a product-

matrix construction,” IEEE Trans. Inf. Theory, vol. 57, no. 8, pp. 5227-

5239, Aug. 2011.

[10] N. B. Shah, K. V. Rashmi, P. V. Kumar, and K. Ramchandran, “Inter-

ference alignment in regenerating codes for distributed storage: Necessity

and code constructions,” IEEE Trans. Inf. Theory, vol. 58, no. 4, pp. 2134-

2158, Apr. 2012.

96

[11] N. B. Shah, K. V. Rashmi, P. V. Kumar, and K. Ramchandran, “Dis-

tributed storage codes with repair-by-transfer and nonachievability of in-

terior points on the storage-bandwidth tradeoff,” IEEE Trans. Inf. Theory,

vol. 58, no. 3, pp. 1837-1852, Mar. 2012.

[12] K. W. Shum “Cooperative regenerating codes for distributed storage sys-

tems,” in IEEE Int. Conf. Comm. (ICC), Kyoto, June 2011.

[13] N. Le Scouarnec, “Exact scalar minimum storage coordinated regenerating

codes,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jul. 2012.

[14] J. Li and B. Li, “Cooperative repair with minimum-storage regenerating

codes for distributed storage,” in Proc. IEEE Int. Conf. on Computer

Commun. (INFOCOM), May 2014.

[15] K. W. Shum and Y. Hu, “Exact minimum-repair-bandwidth cooperative

regenerating codes for distributed storage systems,” in Proc. IEEE Int.

Symp. Inf. Theory (ISIT), Aug. 2011.

[16] S. Jiekak and N. Le Scouarnec, “CROSS-MBCR: Exact minimum band-

width coordinated regenerating codes,” arXiv:1207.0854v1 [cs.IT], Jul.

2012.

97

[17] A. Wang and Z. Zhang, “Exact cooperative regenerating codes with

minimum-repair-bandwidth for distributed storage,” in Proc. IEEE Int.

Conf. on Computer Commun. (INFOCOM), Apr. 2013.

[18] C. Tian, “Characterizing the rate region of the (4,3,3) exact-repair regen-

erating codes,” IEEE J. Sel. Areas Commun., vol. 32, no. 5, pp. 967-975,

May. 2014.

[19] C. Tian, “A note on the rate region of exact-repair regen-

erating codes,” CoRR, abs/1503.00011, Mar. 2015. Available:

http://arxiv.org/abs/1503.00011

[20] B. Sasidharan, K. Senthoor, and P. V. Kumar, “An improved outer

bound on the storage-repair-bandwidth tradeoff of exact-repair regener-

ating codes,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), June 2014.

[21] I. M. Duursma, “Outer bounds for exact repair codes,” CoRR,

abs/1406.4852, June 2014. Available: http://arxiv.org/abs/1406.4852

[22] I. M. Duursma, “Shortened regenerating codes,” CoRR, abs/1505.00178,

MAy 2015. Available: http://arxiv.org/abs/1505.00178

[23] N. Prakash and N. Krishnan, “The storage-repair-bandwidth trade-off of

exact repair linear regenerating codes for the case d = k = n− 1,” in Proc.

98

IEEE Int. Symp. Inf. Theory (ISIT), June 2015.

[24] C. Tian, B. Sasidharan, V. Aggarwal, V. A. Vaishampayan, and P. V. Ku-

mar, “Layered, exact-repair regenerating codes via embedded error correc-

tion and block designs,” IEEE Trans. Inf. Theory, vol. 61, no. 4, pp. 1933-

1947, Apr. 2015.

[25] F. Oggier and A. Datta, “Self-repairing homomorphic codes for distributed

storage systems,” in Proc. IEEE Int. Conf. on Computer Commun. (IN-

FOCOM), Apr. 2011.

[26] P. Gopalan, C. Huang, H. Simitci, and S. Yekhanin, “On the locality of

codeword symbols,” IEEE Trans. Inf. Theory, vol. 58, no. 11, pp. 6925–

6934, Aug. 2012.

[27] D. Papailiopoulos and A. Dimakis, “Locally repairable codes,” in Proc.

IEEE Int. Symp. Inf. Theory (ISIT), Jul. 2012.

[28] V. Guruswami and M. Wootters, “Repairing Reed-Solomon codes,” in

Proc. Annu. Symp. Theory Comput. (STOC), June 2016.

[29] H. Dau, I. Duursma, H. M. Kiah, and O. Milenkovic, “Repairing Reed-

Solomon codes with multiple erasures,” CoRR, vol. abs/1612.0136, Dec.

2016. Available: http://arxiv.org/abs/1612.0136

99

[30] V. Aggarwal, C. Tian, V. A. Vaishampayan, and Y. F. R. Chen. “Dis-

tributed data storage systems with opportunistic repair.” in Proc. IEEE

Int. Conf. on Computer Commun. (INFOCOM), Apr. 2014.

[31] A. Kermarrec, N. Le Scouarnec, and G. Straub, “Repairing multiple fail-

ures with coordinated and adaptive regenerating codes,” in Proc. IEEE

Int. Symp. Network Coding (NetCod), Jul. 2011.

[32] D. Borthakur, ”HDFS architecture guide,” Hadoop Apache Project, 2008.

[33] V. R. Cadambe, S. A. Jafar, H. Maleki, K. Ramchandran, and C. Suh

“Asymptotic interference alignment for optimal repair MDS codes in dis-

tributed storage,” IEEE Trans. Inf. Theory, vol. 59, no. 5, pp. 2974-2987,

May 2013.

[34] S. Mohajer and R. Tandon, “New bounds on the (n, k, d) storage systems

with exact repair,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), June

2015.

[35] B. Sasidharan, N. Prakash, M. N. Krishnan, M. Vajha, K. Senthoor, and

P. V. Kumar, “Outer bounds on the storage-repair bandwidth tradeoff

of exact-repair regenerating codes,” CoRR, abs/1606.04467, June 2015.

Available: http://arxiv.org/abs/1606.04467

100

[36] “Information theory inequality prover,” http://user-

www.ie.cuhk.edu.hk/ ITIP/, accessed: 2016-Jun-02.

[37] S. Goparaju, S.E. Rouayheb, and R. Calderbank, “New codes and inner

bounds for exact repair in distributed storage systems,” in Proc. IEEE Int.

Symp. Inf. Theory (ISIT), June 2014.

[38] T. Ernvall, S. El Rouayheb, C. Hollanti, and H. V. Poor, “Capacity and

security of heterogeneous distributed storage systems. in Proc. IEEE Int.

Symp. Inf. Theory (ISIT), July 2013.

[39] B. Sasidharan and P. V. Kumar, “High-rate regenerating codes through

layering,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), July 2013.

101

초 록

최근 SNS나 클라우드 서비스의 사용량 증가와 더불어, 대규모의 데이터를 네

트워크상에 효율적이고 안정적으로 저장할 수 있는 분산 저장 시스템(distributed

storage system)에 대한 연구가 활발하게 진행되고 있다. 분산 저장 시스템은

대규모의 데이터 파일을 네트워크로 연결된 다수의 노드에 분산적으로 저장하

는 시스템을 말한다. 일부의 노드가 손실되었을 때, 손실된 노드는 다른 생존한

노드들로부터 전송받은 정보를 이용하여 복구될 수 있어야 한다. 이러한 복구

과정에서 필요한 총 정보량인 복구 대역폭(repair bandwidth)을 최소화하는 것은

분산 저장시스템의 중요한 성능 지표중 하나이다. 협력 재생 부호(Cooperative

regenerating codes)는 높은 복구 대역폭을 최소화하는 erasure code의 일종이다.

(n, k, d, r)-협력재생부호는총 n개의저장소노드중일부의 k개의노드에저장된

정보만으로 원래의 파일을 복구할 수 있는 기능과 r개의 노드 손실이 발생했을때,

임의의 d개의생존한노드들로부터정보를전송받아복구될수있는기능을가진다.

이 때, 재생 부호의 각 노드별 저장량 α와 복구 대역폭 γ는 일반적으로 상

충관계에 놓여 있음이 알려져 있다. 하지만 새롭게 복구된 노드가 기존 노드와

다른 정보를 가지는 것을 허용하는 기능 복구(functional repair) 모델의 경우, 이

상충관계가 완벽히 밝혀져 있으나, 손실되기 전과 완전히 동일한 노드로의 복구를

요구하는 동일 복구(exact repair) 모델의 경우, 이 상충관계가 명확히 밝혀져

102

있지 않다. 본 논문에서는 동일 복구 모델의 상충 관계에 대한 두 종류의 외부

경계(outer bound)를 제시한다. 상충 관계의 외부 경계는 기능 복구 부호로는

가능하지만, 동일 복구 부호로는 설계가 불가능한 (α, γ) 동작점들을 제시한다.

첫 번째 외부 경계는 일반적인 (n, k, d, r) 파라미터를 가지는 협력 재생 부호를

가정하여 유도되었다. 이 외부 경계는 d = k = n − 1, r = 1을 만족하는 경우에

한하여 최적의 상충관계를 밝힌 Prakash 등의 연구 결과를 일반화한 것으로 볼 수

있다. 첫 번째 외부 경계는 k가 크거나 r이 작거나 k와 d가 비슷한 조건 하에서 더

좋은 성능을 보임을 확인할 수 있다.

두 번째 외부 경계는 한 번에 한 개의 손실된 노드만을 복구하는 경우로 한정하

였을 때를 고려한다. 두 번째 외부 경계는 두 개의 독립적인 부경계(sub-bound)의

합집합으로 표현된다. 두 가지의 부경계들은 각각 성능이 좋아지는 조건이 다름을

실험을 통해 확인할 수 있다. 첫 번째 부경계는 본 논문에서 첫 번째로 제안된

외부 경계와 비슷하게 k/n으로 정의되는 코드의 부호화율이 1에 가까울수록 더

좋은 성능을 보이며, 두 번째 부 경계는 반대로 부호화율이 낮아질떄 다른 기존의

외부경계들보다 더 좋은 성능을 보임을 확인할 수 있다.

주요어: 분산 저장 시스템, 재생 부호, 협력 재생 부호, 복구 대역폭, 동일 복구

모델

학번: 2013-30256

103

104

105

	1 Introduction
	1.1 The Family of Regenerating Codes
	1.2 The Exact Repair Model
	1.3 Existing Results on the S-B Tradeoff of Exact Repair Codes
	1.4 Main Contribution

	2 An Outer Bound on the Storage-Bandwidth Tradeoff of Cooperative Regenerating Codes
	2.1 Conditions for Parity Check Matrices of Linear Cooperative Regenerating Codes
	2.1.1 Proof of Lemma 1

	2.2 An Alternative Proof of Functional Repair Cutset Bound
	2.2.1 Construction of Hrepair
	2.2.2 Lower Bounds of rank(Hrepair)
	2.2.3 Upper Bounds of B

	2.3 Block Matrices with Full-Rank Diagonal Blocks
	2.3.1 Definitions
	2.3.2 Properties of Block Matrices with Full-Rank Diagonal Blocks

	2.4 An Outer Bound of Linear and Exact-Repair Cooperative Regenerating Codes
	2.4.1 Construction of Hrepair
	2.4.2 Lower Bound of rank(Hrepair)
	2.4.3 Derivation of the Proposed Outer Bound

	2.5 Evaluation of the Proposed Outer Bound

	3 An Improved Outer Bound for the Case of Single Node Repair
	3.1 Symmetric Exact-Repair codes
	3.2 Conditions for Parity Check Matrices of Single Repair Codes
	3.3 Construction of Hsingle
	3.4 Derivation of Two Sub-Bounds
	3.4.1 Proof of Theorem 2
	3.4.2 Proof of Theorem 3

	3.5 Performance Evaluation

	4 Conclusion
	Bibilography
	Abstract (In Korean)
	Acknowledgements (In Korean)

<startpage>13
1 Introduction 1
 1.1 The Family of Regenerating Codes 2
 1.2 The Exact Repair Model 5
 1.3 Existing Results on the S-B Tradeoff of Exact Repair Codes 7
 1.4 Main Contribution 10
2 An Outer Bound on the Storage-Bandwidth Tradeoff of Cooperative Regenerating Codes 14
 2.1 Conditions for Parity Check Matrices of Linear Cooperative Regenerating Codes 14
 2.1.1 Proof of Lemma 1 24
 2.2 An Alternative Proof of Functional Repair Cutset Bound 28
 2.2.1 Construction of Hrepair 30
 2.2.2 Lower Bounds of rank(Hrepair) 35
 2.2.3 Upper Bounds of B 39
 2.3 Block Matrices with Full-Rank Diagonal Blocks 39
 2.3.1 Definitions 41
 2.3.2 Properties of Block Matrices with Full-Rank Diagonal Blocks 43
 2.4 An Outer Bound of Linear and Exact-Repair Cooperative Regenerating Codes 55
 2.4.1 Construction of Hrepair 56
 2.4.2 Lower Bound of rank(Hrepair) 57
 2.4.3 Derivation of the Proposed Outer Bound 60
 2.5 Evaluation of the Proposed Outer Bound 63
3 An Improved Outer Bound for the Case of Single Node Repair 69
 3.1 Symmetric Exact-Repair codes 69
 3.2 Conditions for Parity Check Matrices of Single Repair Codes 70
 3.3 Construction of Hsingle 75
 3.4 Derivation of Two Sub-Bounds 80
 3.4.1 Proof of Theorem 2 80
 3.4.2 Proof of Theorem 3 83
 3.5 Performance Evaluation 86
4 Conclusion 93
Bibilography 95
Abstract (In Korean) 102
Acknowledgements (In Korean) 104
</body>

