7,833 research outputs found

    Outer Approximation Algorithms for Canonical DC Problems

    Get PDF
    The paper discusses a general framework for outer approximation type algorithms for the canonical DC optimization problem. The algorithms rely on a polar reformulation of the problem and exploit an approximated oracle in order to check global optimality. Consequently, approximate optimality conditions are introduced and bounds on the quality of the approximate global optimal solution are obtained. A thorough analysis of properties which guarantee convergence is carried out; two families of conditions are introduced which lead to design six implementable algorithms, whose convergence can be proved within a unified framework

    Optimization of Trading Physics Models of Markets

    Get PDF
    We describe an end-to-end real-time S&P futures trading system. Inner-shell stochastic nonlinear dynamic models are developed, and Canonical Momenta Indicators (CMI) are derived from a fitted Lagrangian used by outer-shell trading models dependent on these indicators. Recursive and adaptive optimization using Adaptive Simulated Annealing (ASA) is used for fitting parameters shared across these shells of dynamic and trading models

    Outer Approximation Algorithms for DC Programs and Beyond

    Get PDF
    We consider the well-known Canonical DC (CDC) optimization problem, relying on an alternative equivalent formulation based on a polar characterization of the constraint, and a novel generalization of this problem, which we name Single Reverse Polar problem (SRP). We study the theoretical properties of the new class of (SRP) problems, and contrast them with those of (CDC)problems. We introduce of the concept of ``approximate oracle'' for the optimality conditions of (CDC) and (SRP), and make a thorough study of the impact of approximations in the optimality conditions onto the quality of the approximate optimal solutions, that is the feasible solutions which satisfy them. Afterwards, we develop very general hierarchies of convergence conditions, similar but not identical for (CDC) and (SRP), starting from very abstract ones and moving towards more readily implementable ones. Six and three different sets of conditions are proposed for (CDC) and (SRP), respectively. As a result, we propose very general algorithmic schemes, based on approximate oracles and the developed hierarchies, giving rise to many different implementable algorithms, which can be proven to generate an approximate optimal value in a finite number of steps, where the error can be managed and controlled. Among them, six different implementable algorithms for (CDC) problems, four of which are new and can't be reduced to the original cutting plane algorithm for (CDC) and its modifications; the connections of our results with the existing algorithms in the literature are outlined. Also, three cutting plane algorithms for solving (SRP) problems are proposed, which seem to be new and cannot be reduced to each other

    Algorithmic aspects of branched coverings

    Get PDF
    This is the announcement, and the long summary, of a series of articles on the algorithmic study of Thurston maps. We describe branched coverings of the sphere in terms of group-theoretical objects called bisets, and develop a theory of decompositions of bisets. We introduce a canonical "Levy" decomposition of an arbitrary Thurston map into homeomorphisms, metrically-expanding maps and maps doubly covered by torus endomorphisms. The homeomorphisms decompose themselves into finite-order and pseudo-Anosov maps, and the expanding maps decompose themselves into rational maps. As an outcome, we prove that it is decidable when two Thurston maps are equivalent. We also show that the decompositions above are computable, both in theory and in practice.Comment: 60-page announcement of 5-part text, to apper in Ann. Fac. Sci. Toulouse. Minor typos corrected, and major rewrite of section 7.8, which was studying a different map than claime

    Approximate optimality conditions and stopping criteria in canonical DC programming

    Get PDF
    In this paper, we study approximate optimality conditions for the Canonical DC (CDC) optimization problem and their relationships with stopping criteria for a large class of solution algorithms for the problem. In fact, global optimality conditions for CDC are very often restated in terms of a non-convex optimization problem, which has to be solved each time the optimality of a given tentative solution has to be checked. Since this is in principle a costly task, it makes sense to only solve the problem approximately, leading to an inexact stopping criteria and therefore to approximate optimality conditions. In this framework, it is important to study the relationships between the approximation in the stopping criteria and the quality of the solutions that the corresponding approximated optimality conditions may eventually accept as optimal, in order to ensure that a small tolerance in the stopping criteria does not lead to a disproportionally large approximation of the optimal value of the CDC problem. We develop conditions ensuring that this is the case; these turn out to be closely related with the well-known concept of regularity of a CDC problem, actually coinciding with the latter if the reverse-constraint set is a polyhedron

    Smooth and Strong PCPs

    Get PDF
    Probabilistically checkable proofs (PCPs) can be verified based only on a constant amount of random queries, such that any correct claim has a proof that is always accepted, and incorrect claims are rejected with high probability (regardless of the given alleged proof). We consider two possible features of PCPs: - A PCP is strong if it rejects an alleged proof of a correct claim with probability proportional to its distance from some correct proof of that claim. - A PCP is smooth if each location in a proof is queried with equal probability. We prove that all sets in NP have PCPs that are both smooth and strong, are of polynomial length, and can be verified based on a constant number of queries. This is achieved by following the proof of the PCP theorem of Arora, Lund, Motwani, Sudan and Szegedy (JACM, 1998), providing a stronger analysis of the Hadamard and Reed - Muller based PCPs and a refined PCP composition theorem. In fact, we show that any set in NP has a smooth strong canonical PCP of Proximity (PCPP), meaning that there is an efficiently computable bijection of NP witnesses to correct proofs. This improves on the recent construction of Dinur, Gur and Goldreich (ITCS, 2019) of PCPPs that are strong canonical but inherently non-smooth. Our result implies the hardness of approximating the satisfiability of "stable" 3CNF formulae with bounded variable occurrence, where stable means that the number of clauses violated by an assignment is proportional to its distance from a satisfying assignment (in the relative Hamming metric). This proves a hypothesis used in the work of Friggstad, Khodamoradi and Salavatipour (SODA, 2019), suggesting a connection between the hardness of these instances and other stable optimization problems
    corecore