1,799 research outputs found

    Outdoor to Indoor Penetration Loss at 28 GHz for Fixed Wireless Access

    Full text link
    This paper present the results from a 28 GHz channel sounding campaign performed to investigate the effects of outdoor to indoor penetration on the wireless propagation channel characteristics for an urban microcell in a fixed wireless access scenario. The measurements are performed with a real-time channel sounder, which can measure path loss up to 169 dB, and equipped with phased array antennas that allows electrical beam steering for directionally resolved measurements in dynamic environments. Thanks to the short measurement time and the excellent phase stability of the system, we obtain both directional and omnidirectional channel power delay profiles without any delay uncertainty. For outdoor and indoor receiver locations, we compare path loss, delay spreads and angular spreads obtained for two different types of buildings

    73 GHz Wideband Millimeter-Wave Foliage and Ground Reflection Measurements and Models

    Full text link
    This paper presents 73 GHz wideband outdoor foliage and ground reflection measurements. Propagation measurements were made with a 400 Megachip-per-second sliding correlator channel sounder, with rotatable 27 dBi (7 degrees half- power beamwidth) horn antennas at both the transmitter and receiver, to study foliage-induced scattering and de-polarization effects, to assist in developing future wireless systems that will use adaptive array antennas. Signal attenuation through foliage was measured to be 0.4 dB/m for both co- and cross-polarized antenna configurations. Measured ground reflection coefficients for dirt and gravel ranged from 0.02 to 0.34, for incident angles ranging from 60 degrees to 81 degrees (with respect to the normal incidence of the surface). These data are useful for link budget design and site-specific (ray-tracing) models for future millimeter-wave communication systems.Comment: 6 pages, 4 figures, 2015 IEEE International Conference on Communications (ICC), ICC Workshop

    An advanced multi-element microcellular ray tracing model

    Get PDF
    • …
    corecore