6,851 research outputs found

    Navigation without localisation: reliable teach and repeat based on the convergence theorem

    Full text link
    We present a novel concept for teach-and-repeat visual navigation. The proposed concept is based on a mathematical model, which indicates that in teach-and-repeat navigation scenarios, mobile robots do not need to perform explicit localisation. Rather than that, a mobile robot which repeats a previously taught path can simply `replay' the learned velocities, while using its camera information only to correct its heading relative to the intended path. To support our claim, we establish a position error model of a robot, which traverses a taught path by only correcting its heading. Then, we outline a mathematical proof which shows that this position error does not diverge over time. Based on the insights from the model, we present a simple monocular teach-and-repeat navigation method. The method is computationally efficient, it does not require camera calibration, and it can learn and autonomously traverse arbitrarily-shaped paths. In a series of experiments, we demonstrate that the method can reliably guide mobile robots in realistic indoor and outdoor conditions, and can cope with imperfect odometry, landmark deficiency, illumination variations and naturally-occurring environment changes. Furthermore, we provide the navigation system and the datasets gathered at http://www.github.com/gestom/stroll_bearnav.Comment: The paper will be presented at IROS 2018 in Madri

    Pushbroom Stereo for High-Speed Navigation in Cluttered Environments

    Full text link
    We present a novel stereo vision algorithm that is capable of obstacle detection on a mobile-CPU processor at 120 frames per second. Our system performs a subset of standard block-matching stereo processing, searching only for obstacles at a single depth. By using an onboard IMU and state-estimator, we can recover the position of obstacles at all other depths, building and updating a full depth-map at framerate. Here, we describe both the algorithm and our implementation on a high-speed, small UAV, flying at over 20 MPH (9 m/s) close to obstacles. The system requires no external sensing or computation and is, to the best of our knowledge, the first high-framerate stereo detection system running onboard a small UAV

    Real-Time Stereo Vision System: A Multi-Block Matching on GPU

    Get PDF
    Real-time stereo vision is attractive in many areas such as outdoor mapping and navigation. As a popular accelerator in the image processing field, GPU is widely used for the studies of the stereo vision algorithms. Recently, many stereo vision systems on GPU have achieved low error rate, as a result of the development of deep learning. However, their processing speed is normally far from the real-time requirement. In this paper, we propose a real-time stereo vision system on GPU for the high-resolution images. This system also maintains a low error rate compared with other fast systems. In our approach, the image is resized to reduce the computational complexity and to realize the real-time processing. The low error rate is kept by using the cost aggregation with multiple blocks, secondary matching and sub-pixel estimation. Its processing speed is 41 fps for 2888×1920 pixels images when the maximum disparity is 760
    • …
    corecore