1,381 research outputs found

    Fundamental Limits of Spectrum Sharing for NOMA-based Cooperative Relaying

    Full text link
    Non-orthogonal multiple access (NOMA) and spectrum sharing (SS) are two emerging multiple access technologies for efficient spectrum utilization in the fifth-generation (5G) wireless communications standard. In this paper, we present a closed-form analysis of the average achievable sum-rate and outage probability for a NOMA-based cooperative relaying system (CRS) in an underlay spectrum sharing scenario. We consider a peak interference constraint, where the interference inflicted by the secondary (unlicensed) network on the primary-user (licensed) receiver (PU-Rx) should be less than a predetermined threshold. We show that the CRS-NOMA outperforms the CRS with conventional orthogonal multiple access (OMA) for large values of peak interference power at the PU-Rx.Comment: 3 figures, Accepted for presentation in GLOBECOM-NOMAT5G workshop, Abu Dhabi, 201

    On the Average Rate of HARQ-Based Quasi-Static Spectrum Sharing Networks

    Get PDF
    Spectrum sharing networks are communication setups in which unlicensed secondary users are permitted to work within the spectrum resources of primary licensees. Considering quasi-static fading environments, this paper studies the effect of hybrid automatic repeat request (HARQ) feedback on the average rate of unlicensed spectrum sharing channels. The results are obtained for different scenarios; Under both peak and average secondary user transmission power constraints, the channel average rate is determined under primary user limited received interference power conditions when there is perfect information about the interference available at the secondary user transmitter. An approximate solution for power allocation between incremental redundancy (INR) HARQ-based data retransmissions is proposed which can be applied in single-user networks as well. Then, we investigate the effect of imperfect secondary-primary channel state information on the interference-limited average rate of the secondary channel. Finally, we restudy all mentioned scenarios in the case where the data transmission is constrained to have limited outage probability. Substantial performance improvement is observed with even a single HARQ-based retransmission in all simulations
    corecore