4 research outputs found

    Joint Sensing and Reception Design of SIMO Hybrid Cognitive Radio Systems

    Get PDF
    In this paper, the problem of joint design of Spectrum Sensing (SS) and receive beamforming (BF), with reference to a Cognitive Radio (CR) system, is considered. The aim of the proposed design is the maximization of the achievable average uplink rate of a Secondary User (SU), subject to an outage-based Quality-of-Service (QoS) constraint for primary communication. A hybrid CR system approach is studied, according to which, the system either operates as an interweave (i.e., opportunistic) or as an underlay (i.e., spectrum sharing) CR system, based on SS results. A realistic Channel State Information (CSI) framework is assumed, according to which, the direct channel links are known by the multiple antenna receivers (RXs), while, merely statistical (covariance) information is available for the interference links. A new, closed form approximation is derived for the outage probability of primary communication, and the problem of rate-optimal selection of SS parameters and receive beamformers is addressed for hybrid, interweave and underlay CR systems. It is proven that our proposed system design outperforms both underlay and interweave CR systems for a range of system scenarios

    Outage Probability Analysis of Dual Hop Relay Networks in Presence of Interference

    Full text link
    Cooperative relaying improves the performance of wireless networks by forming a network of multiple independent virtual sources transmitting the same information as the source node. However, interference induced in the network reduces the performance of cooperative communications. In this work the statistical properties, the cumulative distribution function (CDF) and the probability density function (PDF) for a basic dual hop cooperative relay network with an arbitrary number of interferers over Rayleigh fading channels are derived. Two system models are considered: in the first system model, the interferers are only at the relay node; and in the second system model, interferers are both at the relay and the destination. This work is further extended to Nakagami-m faded interfering channels. Simulation results are presented on outage probability performance to verify the theoretical analysis
    corecore