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Joint Sensing and Reception Design of SIMO
Hybrid Cognitive Radio Systems

Miltiades C. Filippou,Member, IEEE,George A. Ropokis,Member, IEEE,David Gesbert,Fellow, IEEEand
Tharmalingam Ratnarajah,Senior Member, IEEE

Abstract—In this paper, the problem of joint design of Spec-
trum Sensing (SS) and receive beamforming (BF), with reference
to a Cognitive Radio (CR) system, is considered. The aim of the
proposed design is the maximization of the achievable average
uplink rate of a Secondary User (SU), subject to an outage-
based Quality-of-Service (QoS) constraint for primary commu-
nication. A hybrid CR system approach is studied, according
to which, the system either operates as an interweave (i.e.,
opportunistic) or as an underlay (i.e., spectrum sharing) CR
system, based on SS results. A realistic Channel State Information
(CSI) framework is assumed, according to which, the direct
channel links are known by the multiple antenna receivers (RXs),
while, merely statistical (covariance) information is available for
the interference links. A new, closed form approximation is
derived for the outage probability of primary communication,
and the problem of rate-optimal selection of SS parameters and
receive beamformers is addressed for hybrid, interweave and
underlay CR systems. It is proven that our proposed system
design outperforms both underlay and interweave CR systems
for a range of system scenarios.

Index terms—Cognitive radio, hybrid, spectrum sensing,
beamforming

I. I NTRODUCTION

Spectrum scarcity, as it had been observed in 2002 by the
Federal Communications Commission (FCC) [2], constitutes
a major drawback, in terms of facilitating wireless communi-
cations services, due to exclusively allocating frequencybands
to certain entities. To overcome such an obstacle, the notion
of Cognitive Radio (CR) [3]–[6] was introduced, targeting at
improving the information throughput by optimally exploiting
the precious, albeit under-utilized spectrum.

In practice, two different categories of CR systems have
been devised:a) Underlay (or spectrum sharing) CR sys-
tems, where a Primary User (PU) allows the reuse of its
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spectrum by an unlicensed Secondary User (SU),provided
that the interference received by the PU will be such that
an interference temperatureconstraint will not be violated,
and b) Interweave(or opportunistic) CR systems, where the
SU senses the spectrum environment and transmits at time
intervals during which primary activity is not detected. As
it has been explained in [7], via an analytical comparative
study, each of the described CR approaches is characterizedby
drawbacks of different kind. For instance, the throughput per-
formance of an interweave system is seriously affected by the
quality of Spectrum Sensing (SS), while underlay CR systems,
in turn, manipulate their transmission strategy accordingto a
fixed interference temperature constraint, without exploiting
the traffic pattern (or activity profile) of the PU.

With the aim of relaxing such inherent drawbacks, ahybrid
interweave/underlay CR approach has been investigated in
the literature, in order to exploit the benefits of the two
standard CR approaches. However, the full potential of such
a scheme, considering a realistic and practical system, from
a Channel State Information (CSI) viewpoint, has not been
studied so far to the best of our knowledge. For instance,
in works such as [8]–[11], hybrid CR systems are proposed,
however, either no average rate-based performance analysis
under channel fading is undertaken [8], [10], or the unrealistic
assumption of perfect SS is assumed [9]. In [11] a Single-
Input-Single-Output (SISO) framework is investigated, thus,
not being in accordance with today’s most wireless systems,
where multiple antennas are used at the Base Stations (BSs)
and (possibly) at the mobile devices, as well. Furthermore,
in [12], the problem of joint, optimal (in terms of average
SU rate) SS and power policy design is investigated for
a hybrid CR system in the uplink, however, assuming the
existence of uncorrelated receive antennas and applying a
Maximal Ratio Combining (MRC) receiver. Also, in [13], the
downlink of a Multiple-Input-Multiple-Output (MIMO) hybrid
CR system is studied analytically and performance compar-
isons are made with the standard interweave and underlay CR
systems. Nonetheless, the existence of spatially uncorrelated
antennas at the transmitters (TXs) is assumed, along with the
application of a simple, truncated power allocation scheme,
depending on an interference temperature threshold. Moreover,
in [1], the problem of optimal receive beamforming (BF),
in terms of maximizing the achievable average uplink rate,
is presented and solved, focusing on the two-user, multiple-
antenna interference channel, with combined instantaneous
and statistical CSI. However, the two systems are characterized
by the same priority, thus, no solution for the equivalent CR
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system was provided.
Motivated by the above, in this paper we focus on the uplink

of a hybrid interweave/underlay CR system. The hybrid CR
system operates either as an interweave or as an underlay CR
system, based on the results of the SS procedure. In such a
setting, our contributions can be summarized as follows:

• Focusing on a spatially correlated fading channel model
and assuming a combined CSI setting at the receivers
(RXs) (CSIR), where direct links are known instanta-
neously and interference links are merely known based
on their second order statistics, we derive new closed
form approximations for the outage probability of pri-
mary communication, considering the hybrid CR system,
as well as the standard interweave and underlay CR
systems. Simulations show that the derived expressions
approximate the actual outage probability sufficiently
well.

– Concentrating on primary systems applying MRC re-
ceivers, the derived approximations are, to the best
of our knowledge, the first appearing in the literature,
that, unlike works such as [14], also include additive
noise and do not presume a specific relation between
the covariance matrices of the desired and interfering
channels. Also, in contrast with [15], both the desired
and the interference links are spatially correlated.

• Having derived the expressions described above, and
addressing an interference-limited system, i.e., a system
for which interference is the dominant source of signal
degradation, as compared to noise, for the first time, we
formulate and solve the problem of jointly determining
a) the transmit power of the SU,b) the applied receive
BF scheme, as well asc) the SS parameters, such as to
maximize the achievable average rate of the SU, subject
to an outage-based constraint on primary communica-
tion. The derived optimization framework is applied to all
previously described CR system approaches, i.e., hybrid,
as well as interweave/underlay.

– The derived optimization framework can be applied
for determining the transmit power and optimizing the
BF and SS design for uplink communication of CR
systems as well as for Licensed Shared Access (LSA)
systems [16], [17], where the operation of a licensee
user without violating the performance of an incumbent
user, is crucial.

– Focusing, in particular, on the SS and receive BF
optimization problems, we note that, to the best of our
knowledge, these two problems are treated in a joint
manner, for the first time.

• The throughput performance of the optimized hybrid CR
system is evaluated and compared to the performance
achieved by the two optimized standard CR systems. It
turns out that the optimized hybrid system outperforms
the optimized standard ones for the whole range of values
of the investigated system design parameters, i.e., the
outage constraint and the activity profile of the PU. It is
also shown that the performance of the optimized hybrid
CR system, for low primary activity profiles, converges

to the one achieved by the optimized interweave system,
while, for high primary activity profiles, the optimized
hybrid CR system behaves in a similar manner as the
optimized underlay one.

The following notations are adopted throughout the paper:
all lower case boldface letters indicate vectors, whereas all
upper case boldface letters denote matrices. Superscript(·)H
stands for Hermitian transpose,‖ · ‖ denotes the Euclidean
norm andPr(A) denotes the probability of eventA. Symbol
[A](p,q) denotes the(p, q)-th element of matrixA. The all-zero
vector of dimensionn×1 is denoted as0n. The identity matrix
of dimensionn×n is denoted asIn, whereasE|X{f(X,Y )}
symbolizes the conditional (i.e., given Random Variable (RV)
X) expectation of functionf(X,Y ). Also, tr(A), λj(A) and
rank(A) denote the trace, thej-th largest eigenvalue of square
matrix A and its rank, respectively. For a random vector
x,x ∼ CN (µ,Σ) denotes thatx follows a Circularly Sym-
metric Complex Gaussian (CSCG) distribution, with meanµ

and covariance matrixΣ. Furthermore,exp(·) andln(·) denote
the exponential and logarithmic functions. Additionally,E1(·)
represents the exponential integral function, as defined in[18,
eq. (5.1.1)] andQ(·) represents the complementary Gaussian
distribution function, as defined in [19, eq (4.1)]. Finally,
γ ≈ 0.5772 stands for the Euler-Mascheroni constant, as
defined in [18, eq. (4.1.32)].

II. SYSTEM MODEL

A. Signal and channel model

The uplink of a CR system is considered, as shown in Fig. 1,
which comprises of a single-antenna TX of a primary network,
TX p, that communicates with a multiple-antenna RX, RXp. It
is assumed that the primary network is willing to share part of
its spectral resources with a secondary network. The latteris
composed of a single-antenna TX, TXs, communicating with
a multiple antenna RX, RXs. In what follows, it is assumed
that RX p and RXs are equipped withM antennas, each.

The Single-Input-Multiple-Output (SIMO) channel between
TX m and RXn is denoted ashmn ∈ C

M×1, m, n ∈ {p, s}
and the Rayleigh fading SISO channel between TXp and
TX s is denoted ash0 ∼ CN (0, σ2

0). Also, the elements of
channelshmn,m, n ∈ {p, s}, are spatially correlated, hence
hmn ∼ CN (0M ,Rmn), with m,n ∈ {p, s} or

hmn = R
1

2

mnhmn,w, m, n ∈ {p, s}, (1)

whereR
1

2

mn is the symmetric square root of covariance matrix
Rmn of channel vectorhmn andhmn,w ∼ CN (0M , IM ).

Regarding the availability of CSIR, a practical scenario is
considered, according to which RXi, i ∈ {p, s}, is aware of
both instantaneous direct channelhii, as well as its covariance
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Fig. 1. The examined hybrid CR system.

matrix Rii
1, while it only has statistical knowledge of the

other links (i.e., the interference ones and the direct linkof
RX j, j ∈ {p, s}, j 6= i) , in the form of covariance
information. Since such information is slow varying, it canbe
available at each of the RXs via a low capacity/high latency
feedback link. Such a CSIR formulation is chosen, because
standard releases for 4G wireless systems require that a given
terminal is allowed to report instantaneous CSI to its home
BS, however, it cannot report such information to interfering
BSs [1].

Since SS constitutes an essential feature of the investigated
hybrid CR system, focusing on secondary communication,
each MAC frame of the SU, that has a duration ofT time
units, consists ofa) a SS subframe, the duration of which is
τ time units, followed byb) a DT subframe, which lasts for
the remainingT − τ time units. Concerning SS, we choose
to apply Energy Detection (ED), since it is characterized by
low implementation complexity and analytical expressionsfor
the false alarm and detection probabilities. Furthermore,it is
assumed that the length of each MAC frame is such that the
involved wireless channels remain fixed for the duration of it.

In what follows, we describe the operation of the studied
system, during the SS and DT subframes of each secondary
MAC frame.

B. Description of SS phase

Focusing on the application of ED for SS, it is assumed
that TXs senses the wireless channel by sampling the received
signal, with a sampling frequency denoted byfs, therefore, SS
is based onN = τfs samples (it is assumed that quantitiesτ

1The perfect knowledge of channelhii at RX i, i ∈ {p, s}, though
hard to accomplish in reality, is a working assumption made withthe aim
of examining a multi-parameter system model (i.e., SS and uplinkData
Transmission (DT) design under combined CSIR assumptions) in an easy-to-
follow manner. Of course, imperfect knowledge of the direct channel would
either imply the existence of a supplementary Medium Access Control (MAC)
subframe devoted to pilot-aided channel estimation, or, it can be modeled by
assuming a norm-bounded uncertainty setup, as it is done so in [20] for the
SU to PU interference channel. However, such assumptions would lead to a
more complicated system setup, which is outside the scope of this paper.

andfs are such thatN is an integer number). We define event
H0 as the one occurring when the primary system is idle, and
its complementary event is denoted asH1. The received signal
at TX s for then-th, n = 1, . . . , N , time instant is expressed,
for each of hypothesesH0 andH1 as

ys[n] =

{

η[n], if H0

h0

√
Ppxp[n] + η[n], if H1,

(2)

1 ≤ n ≤ N , where additive noise,η[n], is a CSCG,
independent, identically distributed (i.i.d.) process with η[n] ∼
CN (0, N0,0), Pp denotes the fixed transmit power emitted by
TX p and the information symbolxp[n] is selected from a
CSCG codebook, i.e.,xp[n] ∼ CN (0, 1) and is independent
of η[n]. Under these assumptions, when ED is applied, based
on a detection threshold, denoted byε, ε ≥ 0, a closed form
expression describing the average (over channel fading) prob-
ability of false alarm,Pf (N, ε), as well as an approximation
for the average probability of detection,Pd(N, ε), are derived
in [7], [21]. These expressions are the following

Pf (N, ε) = Q
(√

N

(
ε

N0,0
− 1

))

, (3)

and

Pd(N, ε) = Q
(√

N

(
ε

Ppσ
2
0 +N0,0

− 1

))

. (4)

In the following, the DT phase for every secondary MAC
frame, is described.

C. Description of DT phase

Having described the SS procedure, we now focus on the
DT subframe of the secondary MAC frame. As explained
earlier, the operation of the secondary network during the time
intervals corresponding to these subframes depends on the
obtained SS results. Thus, for the description of the received
signal during the DT subframe, one needs to discriminate
between two SS decision cases.

• Case I: Absence of primary transmissions is detected. We
denote this event aŝH0. Whenever such an event occurs,
TX s transmits using a power levelPs = P0. On the
other hand, RXs employs a unit-norm receive BF vector
w = w0(hss) ∈ C

M×1 for the detection of the signal
transmitted by the secondary terminal.

• Case II: Presence of primary transmission is detected. We
denote this event aŝH1. WheneverĤ1 occurs, TX s

transmits using a power level,Ps = P1. In addition, RXs
employs a unit-norm BF vector,w = w1(hss) ∈ C

M×1,
that is designed taking into account the fact that primary
activity has been detected.

In the following analysis, the achievable instantaneous rate
at RX s, regarding the investigated system model, is derived.

D. Rate analysis of the secondary system

For the determination of the achievable instantaneous rateof
the secondary system, the signal model at the RX side needs
to be examined. Using eventŝH0 and Ĥ1, that were defined
before, one can write the expression for the received signal
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reaching RXs, after applying receive BF, given that eventĤk

has occurred, as

yk = wH
k hss

√

Pkxs + ckw
H
k hps

√

Ppxp +wH
k ns, (5)

k ∈ {0, 1}, wherexp, xs denote the standard complex Gaus-
sian signals transmitted by TXp and TX s, respectively, and
ns denotes the noise at RXs. For the latter, it is assumed
that ns ∼ CN (0M , N0,sIM ). Variableck in (5) is a discrete
Bernoulli distributed RV, that models the presence of primary
activity during secondary transmissions. In more detail, RV ck

is equal to1 with probabilityPr
(

H1|Ĥk

)

.
Given (5), the achievable instantaneous secondary rate of

the examined system model can be expressed as

R = R0 +R1, (6)

whereRk, k ∈ {0, 1}, correspond to the rates achieved in
Cases I and II, respectively. More specifically, termRk can
be expressed as

Rk = αk log2

(

1 +

∣
∣wH

k hss

∣
∣
2
Pk

N0,s

)

+ βk log2

(

1 +

∣
∣wH

k hss

∣
∣
2
Pk

N0,s +
∣
∣wH

k hps

∣
∣
2
Pp

)

,

(7)

where (7) holds under the assumption that‖wk‖ = 1. Coeffi-
cientsαk, βk in (7) are defined as

α0 ,
T − τ

T
P0 (1− Pf ) , β0 ,

T − τ

T
P1 (1− Pd) ,and

α1 ,
T − τ

T
P0Pf , β1 ,

T − τ

T
P1Pd,

(8)

whereP0 , Pr(H0) and P1 = 1 − P0. Having presented
the signal model and the achievable instantaneous rate for the
secondary system, in the following section we focus on the
received signal model for the primary system.

E. Primary system operation mode

Based on the described operation mode of the secondary
network, one can write the expression describing the received
signal at RX p, after applying receive BF, provided that
primary transmission takes place, as

zk = vHhpp

√

Ppxp + vHhsp

√

Pkxs + vHnp, if Ĥk, (9)

where,k ∈ {0, 1}, np stands for the additive CSCG noise
received by RXp and v represents the applied receive BF
vector at RXp, which is assumed to be a vector based on the
MRC BF solution, thusv = h̃pp ,

hpp

‖hpp‖
. In our analysis, we

assume thatnp ∼ CN (0M , N0,pIM ).
Based on the above described system model, in the fol-

lowing sections we initially investigate the QoS, quantified by
means of the targeted outage probability, that is achieved for
primary communication, as well as the achievable average rate
of secondary communication. Following that, we formulate the
problem of optimal SS and reception for the secondary RX,
with emphasis on the maximization of its achievable average
rate, given QoS-based constraints, related to the operation of
the primary system.

III. PRELIMINARY ANALYTICAL RESULTS

In this section, closed form approximations describing the
outage probability of primary communication, as well as the
achievable average rate of secondary communication, are de-
rived, focusing on a combined CSIR assumption. According to
this assumption, the direct channel links can be instantaneously
available by the RXs, whereas the interference links are merely
known by their channel covariance matrices. In what follows,
an approximation of the outage probability of the primary RX
is derived in closed form.

A. Outage probability of primary communication

An outage event is declared at RXp, when, given that
primary transmissions take place, the Signal-to-Interference-
plus-Noise Ratio (SINR) measured at RXp is below a thresh-
old, denoted byγ0. In the following proposition, an analytical
approximation for the outage probability experienced at RXp,
is derived.

Proposition 1. The outage probability of primary communi-
cation, for a hybrid SIMO CR system, as given by Fig. 1, can
be approximated as

Pout ≈ (1− Pd)F(P0) + PdF(P1), (10)

where functionF(x) is given by

F(x) =
exp

(
N0,p

xλ̄

)

∏M
j=1 λj(Rpp)

M∑

j=1

λj(Rpp)γ0λ̄x

Ppλj(Rpp)+γ0xλ̄

∏M
k=1,k 6=j

(
1

λk(Rpp)
− 1

λj(Rpp)

) ,

(11)

and λ̄ , E

{
h

H

ppRsphpp

‖hpp‖
2

}

can be found in closed form by
applying [22, Lemma 3].

Proof. The proof is included in Appendix A.

Having derived an analytical approximation describing the
outage probability of primary communication, in what follows,
we derive a lower bound for the average rate of secondary
communication, given the instantaneous knowledge of direct
channelhss at RX s.

B. Achievable average rate of secondary communication

Given the analysis described in Section II-D, the achievable
ergodic rate experienced at RXs, conditioned on the knowl-
edge of channelhss, is given by the following expression

E|hss
{R} = E|hss

{R0}+ E|hss
{R1} , (12)

where the occurrence of event̂Hk, k = 0, 1 is considered for
each termE|hss

{Rk}. Hence, this leads us to the following
analysis:
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1) Occurrence of eventĤ0: When no primary activity
is detected, as a result of SS, RXs applies the MRC BF
solution, such as to maximize the direct signal power, i.e.,
w0 = h̃ss , hss

‖hss‖
. Also, TX s, in its turn, can transmit

with its full available instantaneous power, denoted byPpeak,
i.e., P0 = Ppeak. In this case, the average secondary rate,
conditioned on the knowledge of channelhss at RX s, is
given by the lemma that follows.

Lemma 1. The achievable average rate of secondary com-
munication, conditioned on the instantaneous knowledge of
channelhss at RXs, when eventĤ0 occurs, is characterized
by the following lower bound

E|hss
{R0} ≥ C0, (13)

where

C0 =
α0

ln(2)
C0,0 +

β0

ln(2)
C0,1, (14)

and

C0,0 = ln

(

1 +
Ppeak‖hss‖2

N0,s

)

,

C0,1 = ln



1 +
Ppeak‖hss‖2

N0,s + Pp
hH

ssRpshss

‖hss‖2



 .

(15)

Proof. The proof is included in Appendix B.

2) Occurrence of event̂H1: When eventĤ1 occurs, i.e.,
when the secondary system adopts the underlay CR approach,
the receive BF vector,w1, and the transmit power,P1, are
system parameters which need to be designed.

Lemma 2. The achievable average rate of secondary com-
munication, conditioned on the instantaneous knowledge of
channelhss at RX s, when eventĤ1 occurs, is given by the
following expression

E|hss
{R1} =

α1

ln(2)
C1,0 +

β1

ln(2)
C1,1, (16)

where
C1,0 = ln (A1) , (17)

and

C1,1 = ln (A1) + exp

(

A1

B1

)

E1

(

A1

B1

)

− exp

(

1

B1

)

E1

(

1

B1

)

,

(18)
where, A1 , wH

1

(

IM + P1

N0,s
hssh

H
ss

)

w1, B1 ,

wH
1 ρinr,sRpsw1 and ρinr,s ,

Pp

N0,s
is the system Interference-

to-Noise Ratio (INR), received at RXs, due to primary
transmission.

Proof. The proof is included in Appendix C.

In the section that follows, an optimization problem is
formulated, according to which the SS parameters are jointly
optimized with the receive BF scheme applied at RXs, with
the aim of maximizing the conditional (for a given, known
instant of channelhss at RX s) average rate of secondary
communication, subject to constraints, which are destinedto
protect primary transmissions.

At this point, it should be noted that, in the remainder
of the paper, we will focus on an interference-limited CR
system, i.e., a system in which interference is the main source
of signal degradation, as compared to noise [1]2. With such
an assumption, it holds thatwH

1 ρinr,sRpsw1 ≫ N0,s, hence,
assuming thatN0,s = 1, the last term of expression (18)
asymptotically converges to [18, eq. (5.1.11)]

exp

(
1

B1

)

E1

(
1

B1

)
B1≫1−−−−→ −γ + ln (B1) . (19)

As a result, adopting the high INR assumption, the expectation
E|hss

{R1} becomes as follows

E|hss
{R1} high INR−−−−−−−→ α1

ln(2)
D1,0 +

β1

ln(2)
D1,1. (20)

QuantitiesD1,0 andD1,1 are given by

D1,0 = C1,0, (21)

and

D1,1 = ln

(
A1

B1

)

+ exp

(
A1

B1

)

E1

(
A1

B1

)

+ γ, (22)

respectively.

IV. PROBLEM FORMULATION

Having derived a lower bound for the average rate of
secondary communication, as well as a closed form approxi-
mation for the outage probability of primary communication,
an optimization problem can be formulated, the solution of
which will lead to a rate-optimal scheme of SS and receive BF,
with respect to the secondary system, given an outage-based
constraint, which aims at protecting primary communication
from harmful interference. More specifically, the parameters
that need to be optimized in such a direction, are:a) the SS
design parameters, i.e., the sensing time,τ , as well as the ED
threshold,ε andb) the receive BF vector,w1, applied at RXs,
when eventĤ1 occurs. Hence, the investigated optimization
problem can be mathematically expressed as follows

maximize
w1∈CM×1,τ,ε,P1

E|hss
{R}

subject to Pout ≤ P̃out, Pd = P̃d, ‖w1‖ = 1,

0 < P1 ≤ Ppeak, 0 < τ ≤ T, ε ≥ 0,
(P1)

where,P̃out is the predetermined outage-based constraint, and
P̃d is a targeted average detection probability for the SS
algorithm.

Solving problem (P1) seems to be a cumbersome task,
because an exact, closed form expression of its objective
function is not known, therefore, a solution within a convex
optimization framework is not likely to be found. This ob-
servation leads to the fact that problem (P1) is typically NP-
hard [23, pp. 4]. One would argue that, since a closed form
expression describing theinstantaneoussecondary rate exists
(eq. (6), (7)), methodologies falling within the paradigm of
stochastic programmingcould be applicable. However, to the

2Such an assumption is realistic for a CR scenario, as the secondary system
can be in the vicinity of the primary, following a non-cooperative behavior.
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best of our knowledge, in order to apply stochastic optimiza-
tion algorithms based on a set of deterministic scenarios, a
large number of Monte Carlo samples of the RV involved in
the (stochastic) objective function might be needed [23]. Given
that situation, we propose to determine the rate-optimal BFand
SS parameters by solving a simpler optimization problem. The
objective function of the new optimization problem is a lower
bound of the average rate of RXs, which is easier to manipu-
late, and, as it will be shown by simulation in Section VII, itis
adequately tight. This lower bound is:C = C0+E|hss

{R1}. As
a result, the optimization problem to be solved is the following

maximize
w1∈CM×1,τ,ε,P1

C

subject to Pout ≤ P̃out, Pd = P̃d, ‖w1‖ = 1,

0 < P1 ≤ Ppeak, 0 < τ ≤ T, ε ≥ 0.
(P2)

At this stage, we choose to decompose optimization problem
(P2) into a number of sub-problems. Focusing on each sub-
problem, one parameter is optimized for given values of the
remaining design parameters, which fulfill the constraints.

V. SOLVING THE OPTIMIZATION PROBLEM

A. Determining the transmit power of TXs

Clearly, the transmit power level,P1, that maximizes the
average rate of the SU, will be satisfying the outage constraint
determined by the primary system, with equality. Hence, one
needs to solve the following equation

(

1− P̃d

)

F (Ppeak) + P̃dF (P1,root) = P̃out, (23)

with respect to parameterP1,root. As a result, the following
equation is obtained

P1,root = F−1 (y0) ,where y0 =
P̃out − (1− P̃d)F (Ppeak)

P̃d

.

(24)
The inversion of functionF(·) leads to a non-closed form
expression, thus, a root finding method can be applied in
terms of solving equationF(P1,root)− y0 = 0, with respect to
P1,root > 0. Hence, taking into consideration the peak power
constraint at TXs, the solution becomes

P ∗
1 = min {P1,root, Ppeak} . (25)

In the section that follows, an iterative scheme of jointly
optimizing the receive BF vector and the SS parameters, is
thoroughly described.

B. Jointly optimizing the receive BF vector and the SS param-
eters

Having determined the applied transmit power at TXs, P ∗
1 ,

which satisfies the outage probability constraint of problem
(P2) with equality, the resulting optimization problem that
needs to be solved is the following

maximize
w1∈CM×1,τ,ε

C

subject to Pd = P̃d, ‖w1‖ = 1,

0 < τ ≤ T, ε ≥ 0.

(P3)

One can write the objective function of optimization problem
(P3) as follows

C(w1, τ, ε, P
∗
1 ) = C0(τ, ε) +E|hss

{R1(w1, τ, ε, P
∗
1 )} . (26)

In order to approximate the solution to this problem, we
propose to deploy an iterative procedure based on the al-
ternating optimization of the SS parameters and the receive
BF vector. Applying such an approach requires solving the
following two sub-problems.

1) Optimizing the SS parameters for a given BF vector:We
start with fixing the receive BF vector to be an arbitrary unit-
norm vector, i.e.,w1 = ŵ1, ‖ŵ1‖ = 1. As a consequence,
the resulting objective function of problem (P3) is only a func-
tion of SS parametersτ andε, i.e.,C = C(ŵ1, τ, ε, P

∗
1 ). As a

result, optimization problem (P3) becomes

maximize
τ,ε

C̃(τ, ε)

subject to Pd(τ, ε) = P̃d, 0 < τ ≤ T, ε ≥ 0,
(P4)

where

C̃(τ, ε) = α0(τ, ε)C0,0 + β0(τ, ε)C0,1 + α1(τ, ε)D̂1,0

+ β1(τ, ε)D̂1,1,
(27)

and termsD̂1,0 andD̂1,1 are given by equations (21) and (22),
respectively, withw1 = ŵ1 and P1 = P ∗

1 . Exploiting the
equality constraint for the average detection probability, along
with expression (4), one can express the ED threshold,ε, as a
function of sensing time,τ . This expression is the following

ε(τ) = N0,0

(

1 +
Pp

N0,0
σ2
0

)(Q−1(P̃d)√
τfs

+ 1

)

. (28)

Substituting (28) to the objective function of (P4), the follow-
ing lemma can be proved, which is useful for the solution of
(P4).

Lemma 3. Function C̃(τ, ε(τ)) which is obtained after sub-
stituting (28) to the objective function of(P4), is a concave
function for everyτ ∈ (0, T ].

Proof. The proof is included in Appendix D.

Since the resulting optimization problem is a convex prob-
lem, any convex optimization algorithm can be applied (i.e., a
gradient ascent-based algorithm), with the aim of finding the
rate-optimal valuesτ∗ as well asε∗ (through (28)), for the
given receive BF vector,̂w1.

2) Optimizing the receive BF scheme for fixed SS param-
eters: The problem of designing the receive BF vector,w1,
such as to maximize the objective function of problem (P3),
for given SS parameters,̂τ ∈ (0, T ] and ε̂ ≥ 0, that satisfy
the detection probability constraint, is equivalently expressed
as follows

maximize
w1∈CM×1

E|hss
{R1(w1, τ̂ , ε̂, P

∗
1 )}

subject to Pd(τ̂ , ε̂) = P̃d, ‖w1‖ = 1.
(P5)

The objective function of problem (P5) is given by (20), with
P1 = P ∗

1 , α1 = α1(τ̂ , ε̂) = α̂1 and β1 = β1(τ̂ , ε̂) = β̂1.
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Consequently, incorporating the high INR assumption, the
objective function of the receive BF problem becomes as
follows

E|hss
{R1} high INR−−−−−−−→ α̂1

ln(2)
ln (Aeff) +

β̂1

ln(2)

×
(

ln

(
Aeff

Beff

)

+ exp

(
Aeff

Beff

)

E1

(
Aeff

Beff

)

+ γ

)

,

(29)

whereAeff = Aeff (w1) , wH
1 Heffw1, Beff = Beff (w1) ,

wH
1 Reffw1, Heff , IM +

P∗

1

N0,s
hssh

H
ss and Reff ,

ρinr,sRps. The lemma that follows assists in solving problem
(P5) with respect to vectorw1, when the objective function is
given by expression (29).

Lemma 4. Considering an interference-limited (high INR)
system scenario, optimization problem(P5) can be approxi-
mated by the following problem, the objective of which is a
lower bound of the objective of problem(P5)

w∗
1 = arg max

w∈CM×1,‖w‖=1
wH

H̃effw +
wH

H̄effw

wHReffw
, (P6)

where

H̃eff = κ1Heff, κ1 =
f0(λmax(Heff))− f0(λmin(Heff))

λmax(Heff)− λmin(Heff)
,

(30)
and

H̄eff = µ1Heff, (31)

µ1 =
f1(λmax(R

−1
eff Heff))− f1(λmin(R

−1
eff Heff))

λmax(R
−1
eff Heff)− λmin(R

−1
eff Heff)

. (32)

Functionsf0(·) and f1(·) are given by:f0(x1) = α̂1 ln(x1)
and f1(x2) = β̂1(ln(x2) + exp(x2)E1(x2)).

Proof. The proof is included in Appendix E.

Problem (P6), i.e., the problem of maximizing the sum of a
quadratic form and a Rayleigh quotient over the unit sphere,
can be efficiently solved by applying the Trust Region Self
Consistent Field (TRSCF) algorithm which was introduced
and evaluated in [24, Algorithm 2].

An interesting sub-case, which is worth investigating, is the
case whereP̃d → 1, P1 → 1. When the primary system is
(almost) always in transmission mode, then, by focusing on an
interference-limited system scenario, we obtain an expression
reminiscent of [1, eq. (12)] for the SIMO interference channel,
which is the following

E|hss
{R1} P1→1,P̃d→1−−−−−−−−→ β̂1

ln(2)

(

ln

(
Aeff

Beff

)

+ exp

(
Aeff

Beff

)

E1

(
Aeff

Beff

)

+ γ

)

.

(33)

In such a case, the optimal receive BF can be found as shown
in the following proposition.

Proposition 2. For fixed SS parameters, along with a given
transmit power level,P ∗

1 , which satisfies the constraints of
(P2), and assuming that̃Pd → 1,P1 → 1, as well as that the

investigated system is interference-limited, the optimalreceive
BF vector at RXs, in terms of maximizing the conditional
(with respect to channelhss) average rate of the secondary
system, is given by the following expression

w∗
1 = argmax

w1∈CM×1,‖w1‖=1

Aeff (w1)

Beff (w1)
. (34)

The solution of the latter problem is the eigenvector that
corresponds to the dominant eigenvalue of matrixReff

−1
Heff.

Proof. The proof is included in Appendix F.

3) Iterative optimization framework:Having solved sepa-
rately the SS and BF optimization problems, we propose to
approximate the solution to the rate-optimal joint SS and BF
design by applying the following iterative algorithm.

Algorithm 1 Jointly optimizing BF vector,w1, and SS
parametersτ andε
1 Initialization (n = 0). Fix the receive BF scheme such that
w1 = w

(0)
1 and increase counter by one.

2 For the n-th iteration, solve problem (P4) withw1 =

w
(n−1)
1 and find valuesτn andεn.

3 Utilizing valuesτn and εn, solve problem (P6) and deter-
mine BF vectorw(n)

1 .
4 Compute the value of the objectiveCn(w(n)

1 , τn, εn).
5 Increase the counter by one and if|Cn − Cn−1| < ζ, where

n ≥ 2 andζ > 0, ζ ∈ R is an arbitrary small number, stop,
otherwise go to Step 2.

Remark1. The solution framework falls within the category
of block coordinate ascentoptimization. Considering the ex-
istence of two blocks of optimization variables, as it has
been described above, i.e., one for the SS related variables
τ andǫ and one for the receive BF vector,w1, and observing
that, for each block of variables, the equivalent optimization
problem (problems described by Lemma 3 and Lemma 4,
respectively) consists of a concave objective function anda
convex constraint, then iterative Algorithm 1 converges toa
stationary point(w∗

1 , τ
∗, ǫ∗) [25].

Remark 2. Since for P1 → 0, w∗
1 = wMRC , hss

‖hss‖
,

while in the case whereP1 → 1, the optimal receive BF
vector is the DGE of matricesHeff and Reff, i.e., w∗

1 =

wDGE , argmax‖w1‖=1
Aeff(w1)
Beff(w1)

, a heuristic can be exploited

in terms of choosing vectorw(0)
1 . For instance, one can use

w
(0)
1 = wMRC when the primary activity profile is low,

otherwise vectorw(0)
1 = wDGE can be used. Such a heuristic

can be proved useful in terms of reducing the complexity of
Algorithm 1.

In what follows, we focus on the standard interweave and
underlay CR systems, and optimization problems, equivalent
to (P2), are formulated and then solved.

VI. OPTIMIZING DESIGN PARAMETERS FORSTANDARD

CR SYSTEMS

The goal of this section is to derive rate-optimal system
designs for interweave and underlay CR systems. In what
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follows, we start with the interweave (opportunistic) CR
system.

A. Interweave CR system

Focusing on the interweave CR system, we assume that
TX s transmits with a fixed power level,Ppeak and the receive
BF vector at RXs is based on the MRC solution3. The rate-
optimal design for the interweave CR system boils down to
the following problem

maximize
τint,εint

Cint =
α0(τint, εint)

ln(2)
C0,0 +

β0(τint, εint)

ln(2)
C0,1

subject to Pout,int = P̃out, 0 < τint ≤ T, εint ≥ 0,

(P7)

where the objective is given by the lower bound in (14) and
quantitiesα0(τint, εint) and β0(τint, εint) have the form ofα0

andβ0, (given in (8)), respectively, by exploiting the new SS
parameters,τint and εint. The following proposition will be
useful for solving problem (P7).

Proposition 3. The outage probability of primary communi-
cation, for a SIMO interweave CR system, as given by Fig. 1,
is approximated by the expression that follows

Pout,int ≈ (1− Pd)F(Ppeak) + PdG, (35)

where

G =
1

∏M
j=1 λj(Rpp)

M∑

j=1

λj(Rpp)
(

1− exp
(

− γ0

ρsnr,pλj(Rpp)

))

∏M
k=1,k 6=j

(
1

λk(Rpp)
− 1

λj(Rpp)

) ,

(36)
and ρsnr,p ,

Pp

N0,p
stands for the system Signal-to-Noise Ratio

(SNR) observed at RXp.

Proof. The proof is included in Appendix G.

Having derived a closed form approximation for the outage
probability of primary communication, one can express the
ED threshold,εint, as a function of sensing time,τint, after
substituting (35) to the outage probability constraint of (P7)
and exploiting the closed form approximation for the average
detection probability, which is given by (4). This expression
is the following

εint = δ

(
ξint√
τintfs

+ 1

)

, (37)

where, ξint , Q−1
(

P̃out−F(Ppeak)
G−F(Ppeak)

)

and δ =

N0,0

(

1 +
Pp

N0,0
σ2
0

)

. Substituting (37) to the objective
function of (P7), one obtains a single variable objective
function: U(τint) = α0(τint)

ln(2) C0,0 + β0(τint)
ln(2) C0,1. By applying

the second derivative criterion, it can be shown thatU(τint)
is a concave function of its argument, whenτint ∈ (0, T ],
consequently, an optimalτ∗int and a corresponding (by
exploiting (37)) optimal ED threshold,ε∗int, can be found, by
applying a convex optimization algorithm.

In what follows, the optimal parameter design problem is
formulated and solved for an underlay CR system.

3Regarding the transmit power of TXs for the interweave case, we choose
power levelPpeak, because it is assumed thatP̃d → 1.

B. Underlay CR System

Concentrating on the corresponding underlay CR system,
the optimization problem, equivalent to (P2), that has to be
solved, is the following

maximize
wund∈CM×1,Pund

Cund

subject to Pout,und ≤ P̃out, ‖wund‖ = 1,
(P8)

where,wund represents the applied receive BF vector at RXs

andPund denotes the transmit power of TXs. Due to the lack
of a SS procedure (τ = 0), the conditional average rate of
secondary communication is given by the following expression

Cund =
P0

ln(2)
Dund

1,0 +
P1

ln(2)
Dund

1,1 , (38)

where quantitiesDund
1,0 and Dund

1,1 are given by (21) and (22),
respectively, withw1 , wund and P1 , Pund. A closed
form approximation of the outage probability of primary
communication, considering an underlay CR system, denoted
asPout,und, is given in the following proposition.

Proposition 4. The outage probability of primary communi-
cation, for a SIMO underlay CR system, as given by Fig. 1,
is approximated by the following expression

Pout,und ≈ F(Pund). (39)

Proof. The outage probability of primary communication is
given by

Pout,und = Pr

(

Pp‖hpp‖2
N0,p + Pund|h̃H

pphsp|2
< γ0

)

. (40)

The latter probability has been approximated in Appendix A,
which concludes the proof.

Having derived an approximate expression for the out-
age probability of primary communication, in closed form,
problem (P8) can be efficiently solved. More specifically, by
following the steps of Section V-A with̃Pd → 1, the transmit
power of TX s can be determined and by following the steps
of Section V-B2, withα̂1 = P0 and β̂1 = P1, one can find
the rate-optimal receive BF vector at RXs.

In the following section, the throughput performance of
the designed hybrid CR system is numerically evaluated and
compared to the throughput performance achieved by the
designed interweave and underlay CR systems.

VII. N UMERICAL EVALUATION

In this section, the throughput performance of the de-
signed hybrid CR system is evaluated and compared to the
throughput performance achieved by the equivalent standard
interweave and underlay CR systems. We use Monte Carlo
(MC) simulations with 2500 channel realizations, in order to
evaluate the performance of the designed CR systems. An
interference-limited system is assumed, the parameters of
which are included in Table I. It should be noted that the
values of these parameters remain fixed in the remainder of
this section, unless otherwise stated. The exponential antenna
correlation model is adopted, as described in [26]. More
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TABLE I
BASIC SIMULATION PARAMETERS

MAC frame size,T 100 msec
Number of receive antennas,M 4
SINR threshold,γ0 3 dB
Sampling frequency,fs 6 MHz
Noise variance,N0 = N0,0 = N0,p = N0,s 0 dB
Antenna correlation factor,ρ 0.5
Power level,Ppeak 10 dB
Power level,Pp 10 dB
Variance of TXp-TX s channel,σ2

0
-3 dB

Targeted average detection probability,P̃d 0.975

specifically, considering the(p, q)-th element of the covariance
matrix of channelhmn, m, n ∈ {p, s}, it is taken to be
[Rmn](p,q) = ρ|p−q|, p, q = 1, . . . ,M, ρ ∈ [0, 1].

We start with evaluating the quality of approximating

Poutage(P0, γ0) = Pr

(

Pp‖hpp‖
2

N0,p+P0|h̃H
pphsp|2

< γ0

)

by value

F(P0) for different values of SINR thresholdγ0, when
ρ = 0.2, as well as whenρ = 0.5. As it is evident from Fig. 2,
the approximation is satisfactory for the examined range ofγ0
whenρ = 0.2, but also whenρ = 0.5. In the latter case, the
approximation quality increases for relatively high values of
γ0.

With the aim of assessing the tightness of the derived lower
bound on the average rate of secondary communication, when
eventĤ0 occurs (Lemma 1), in Fig. 3, we depict the achievable
average SU rate as a function of the PU activity profile. The
performance behavior of the lower bound of the average SU
rate,C0, is compared to the one achieved when averaging over
a set of MC runs, with respect to channelhps. The values
of the involved parameters are the ones appearing in Table
I, the SS time is considered to be0.1% of the total MAC
frame duration, and, the simulation takes place for a specific
realization of channelhss. It is observed that the derived lower
bound,C0, constitutes a satisfactory approximation of the true
expectation. It should be also noted, that similar performance
matching was observed for a series of realizations of channel
hss.

In Fig. 4, the average rate of RXs is depicted as a function
of the outage probability of primary communication, when
the primary system is in transmission mode for 30% of the
time. The throughput performance of the optimized hybrid
CR system is plotted together with the one achieved by the
optimized interweave and underlay CR systems. One can ob-
serve that the performance of the hybrid CR system overcomes
the one achieved by the standard CR systems for the whole
examined outage probability range. Also, all three curves are
monotonically increasing, which can be explained by the fact
that, as the outage probability constraint becomes looser,the
secondary system can utilize its available resources, primarily
with the aim of maximizing its spectral efficiency. In addition,
the average secondary rate, achieved by the interweave system
outperforms the one of the underlay system for almost the
whole examined outage probability interval. This happens,
because for low primary activity profiles and for the given
quality of the SS channel, it is better to sense the existence
of spectral “holes” in time, in order to then exploit the full
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Fig. 2. Quality of approximating probabilityPoutage(P0, γ0) by value
F(P0) for different values ofγ0.
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Fig. 3. Tightness of the lower bound,C0, derived in Lemma 1.

potential of the secondary system’s resources (i.e., full transmit
power).

The same performance metric is illustrated in Fig. 5, this
time for a high activity profile of the PU, i.e., when it is active
for 70% of the time. In this case, the following observations
can be made:a) The performance of the optimized hybrid
system always overcomes the one achieved by the optimized
standard CR systems, however, the average secondary rates
of all systems are lower than the ones achieved given a low
primary activity profile. This occurs because more interference
from the primary system is received by RXs, on average.
b) The underlay CR system now outperforms the interweave
one for almost the whole investigated outage probability
interval. Such behavioral change can be explained by the fact
that, as the primary system transmits more frequently, it is
better for the secondary one to exploit the full duration of the
MAC frame for DT.

In Fig. 6, the achievable average rate of RXs is depicted
for the three investigated systems, as a function of the activity
profile of the primary system, when the outage probability
requirement of the PU is fixed to 2%. One can observe that
the average throughput of RXs regarding the hybrid system,
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Fig. 4. Ergodic rate of RXs vs. outage probability of primary
communication,P1 = 0.3.

10
−2

10
−1

1

1.5

2

2.5

3

3.5

Outage probability of primary communication

E
rg

od
ic

 r
at

e 
of

 s
ec

on
da

ry
 c

om
m

un
ic

at
io

n 
[b

its
/s

ec
/H

z]

 

 

Hybrid
Interweave
Underlay

Fig. 5. Ergodic rate of RXs vs. outage probability of primary
communication,P1 = 0.7.

balances between two “extremes” with respect to the activity
profile of the PU. More specifically, the hybrid CR system
behaves similarly to the interweave one, when the PU is idle
for most of the time, whereas it approaches the throughput
performance of the underlay system, when the PU is active
for most of the time. Also importantly, all three curves are
decreasing. This occurs because, when the primary system is
busy for an increased fraction of time, more interference will
be received by RXs, on average.

The impact of the number of receive antennas,M , and the
spatial correlation factor,ρ, on the optimized performance of
the hybrid CR system is shown in Fig. 7, where, the average
rate of secondary communication is depicted for different
primary activity profiles, when the PU outage probability
constraint is equal to 2%. It is observed that, whenM = 8
antennas, the average rate at RXs, in the existence of strongly
correlated Rayleigh fading overcomes the performance ob-
tained when the SIMO channels are close to i.i.d., and this
performance gap increases as the PU becomes active more
often. This behavior occurs because, since, we focus on an
interference-limited system, and given the assumptions made
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Fig. 6. Ergodic rate of RXs vs. primary activity profile,P̃out = 2×
10−2.
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Fig. 7. Ergodic rate of RXs vs. primary activity profile (optimized
hybrid CR system), for different values of antenna number,M , and
correlation factor,ρ, whenP̃out = 2× 10−2.

on CSIR knowledge, it is more critical for RXs to zero-
force the incoming interference from TXp, when the PU
becomes active more frequently, than to exploit a receive
antenna-related gain. Also, for the same reason, one observes
that, when the channel is close to i.i.d., the performance gain
by applying an excess of receive antennas, as compared to a
smaller antenna number, vanishes whenP1 > 0.62.

Finally, in Fig. 8, the transmit power levelsP1 of the hybrid
CR system andPund of the equivalent underlay CR system are
shown as a function of the targeted outage probability of the
PU, when the primary system is active for 30% of the time. It
is clearly shown that the transmit power of TXs increases
as the PU becomes more tolerant to interference. It is also
observed that, when the outage probability constraint becomes
very loose, i.e., wheñPout is about 25%, both the hybrid and
the underlay systems exploit that flexibility in order to transmit
with full power.
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VIII. D ISCUSSIONS

It is envisioned that the investigated system setup can be
extended to more generalized settings, i.e., in the existence
of multiple PUs and SUs, possibly equipped with multiple
antennas (where, for instance, an energy-based antenna selec-
tion criterion can be applied, as in [13]). In such a case, the
SUs can apply a collaborative SS scheme, with the aim of
achieving a high sum average rate (i.e., by enhancing the SS
quality, as studied in works, such as [27]), while satisfying
the QoS constraint imposed by the primary system, in case
a single-user setup is assumed for primary communication.
However, it is possible that multiple PUs, characterized by
divergent outage-based demands are present. In this case,
the differing PU outage requirements would lead towards
multiple transmit power constraints, hence, the transmit power
of TX s would depend on the strictest PU demand. Also,
in this case, the receive BF design would take into account
the covariance matrix of total PU interference. Furthermore,
it would be meaningful to examine the case where imperfect
channel estimation is considered, focusing on the direct links
between a terminal and its assigned BS. As explained before,
the MAC frame structure could be such that a pilot-aided
channel estimation subframe would need to be considered,
hence, interesting trade-offs between SS, channel estimation
and DT at the secondary side, could be revealed. Such system
model extensions would prove to lead towards interesting
future studies.

IX. CONCLUSIONS

In this paper, the uplink of an interference-limited, hybrid
interweave/underlay CR system has been studied. Correlated
Rayleigh fading has been assumed for the involved direct
and interference channels. A realistic CSIR scenario has been
examined, according to which each RX has mere access to the
instantaneous link of its assigned terminal, along with covari-
ance information regarding the global uplink channel. Novel
closed form approximations, describing the outage probability
of the primary system have been derived, considering the
hybrid CR system as well as the standard interweave and

underlay CR systems. Exploiting these expressions, a new
optimization problem that consists in jointly optimizing the
SS parameters and the applied receive BF scheme, towards
maximizing the average secondary rate, subject to an outage
probability-based constraint for primary communication,has
been formulated and solved for all the examined systems. It
has been numerically shown that the optimized hybrid CR
system outperforms the equivalent, optimized interweave and
underlay CR systems, in terms of spectral efficiency.

APPENDIX A
PROOF OFPROPOSITION1

The outage probability of primary communication is given
by the following expression

Pout = Pout,0 + Pout,1, (41)

where termPout,k corresponds to the occurrence of event
Ĥk, k = 0, 1. Hence, for the first term of (41), one obtains

Pout,0 = (1− Pd)Pr

(

Pp‖hpp‖2
N0,p + P0|h̃H

pphsp|2
< γ0

)

. (42)

Let us start by defining the RVsX = h̃H
pphsp and Y =

|X|2. Assuming that vectorhpp is given and thathsp =

R
1

2

sphsp,w, where hsp,w ∼ CN (0M , IM ), one can write

X as: X = h̃H
ppR

1

2

sphsp,w. It then holds that, givenhpp,
X is a complex normal RV with zero mean and variance

σ2
X = ‖h̃H

ppR
1

2

sp‖
2

=
h

H

ppRsphpp

‖hpp‖
2 , therefore, varianceσ2

X is a
ratio of quadratic forms. Hence, givenhpp, Y is an exponential
RV with mean value equal toσ2

X , i.e., it has a Probability
Density Function (PDF) of the form

fY (y|hpp) =
1

σ2
X

exp

(

− y

σ2
X

)

, (43)

and a Cumulative Distribution Function (CDF), given by

FY (y|hpp) = 1− exp

(

− y

σ2
X

)

. (44)

Conditioned on the knowledge ofhpp, one can write (42) as

Pout,0|hpp
= (1− Pd)Pr

(

Y >
‖hpp‖2Pp

γ0P0
− N0,p

P0
|hpp

)

= (1− Pd) exp

(

−‖hpp‖2Pp

γ0P0σ
2
X

+
N0,p

P0σ
2
X

)

.

(45)
Assuming that covariance matrixRpp hasM distinct eigen-
values, RVZ = ‖hpp‖2 is distributed with PDF given by [28,
eq. (14)]

fZ(z) =
1

∏M
j=1 λj(Rpp)

M∑

j=1

exp
(

− z
λj(Rpp)

)

∏M
k=1,k 6=j

(
1

λk(Rpp)
− 1

λj(Rpp)

) ,

(46)
where z ≥ 0. As a result, exploiting (45) and (46) and
introducing λ̄ = E{σ2

X}, one can approximate termPout,0

by the following expression

Pout,0 ≈ (1− Pd)

∫ ∞

0

exp

(

− Ppz

γ0P0λ̄
+

N0,p

P0λ̄

)

fZ(z)dz.

(47)



12

ExpectationE{σ2
X} can be computed in closed form by

exploiting [22, Lemma 3], with matricesA = Rpp and

B = R
1

2

ppRspR
1

2

pp. Consequently, termPout,0 becomes

Pout,0 ≈ (1− Pd)F(P0), (48)

where functionF(x) is given in (11). Following a similar
analysis, probabilityPout,1 is given by the following expression

Pout,1 ≈ PdF(P1), (49)

which completes the proof.

APPENDIX B
PROOF OFLEMMA 1

In the occurrence of event̂H0, the average secondary rate,
conditioned on the instantaneous knowledge of channelhss at
RX s, is given by

E|hss
{R0} = α0 log2

(

1 +
Ppeak‖hss‖2

N0,s

)

+ β0E|hss

{

log2

(

1 +
Ppeak‖hss‖2
N0,s + u0

)}

,

(50)

whereu0 , Pp|h̃H
sshps|2. For the expectation appearing in the

second term of (50), by exploiting the convexity of function
log2

(
1 + 1

x

)
, one can apply Jensen’s inequality with respect

to channelhps, hence, we obtain [29]

E|hss

{

log2

(

1 +
Ppeak‖hss‖2
N0,s + u0

)}

≥ log2

(

1 +
Ppeak‖hss‖2

N0,s + Ehps
{u0}

)

= log2



1 +
Ppeak‖hss‖2

N0,s + Pp
hH

ssRpshss

‖hss‖2



 ,

(51)

which completes the proof.

APPENDIX C
PROOF OFLEMMA 2

The achievable average rate of secondary communication,
conditioned on the instantaneous knowledge of channelhss at
RX s and given that event̂H1 has occurred, is given by the
following expression

E|hss
{R1} = α1 log2

(

1 +
P1|wH

1 hss|2
N0,s

)

+ β1E|hss

{

log2

(

1 +
P1|wH

1 hss|2
N0,s + u1

)}

,

(52)

where u1 , Pp|wH
1 hps|2. Considering the second term of

(52), we get the following expression

E|hss

{

log2

(

1 +
P1|wH

1 hss|2
N0,s + u1

)}

= E|hss

{

log2

(

1 +

P1

N0,s
|wH

1 hss|2

1 + Y1

)}

,

(53)

where,Y1 = ρinr,s|wH
1 hps|2 and BF vectorw1 is indepen-

dent of hps, since no instantaneous knowledge ofhps is
presumed. RVY1 can be written the following way

Y1 = ρinr,s|wH
1 R

1

2

pshps,w|2, (54)

wherehps,w ∼ CN (0M , IM ).
It is, thus, easy to confirm thatY1 is an exponen-

tially distributed RV, and its PDF is given by:fY1
(y1) =

1
ρinr,sw

H

1
Rpsw1

exp
(

− y1

ρinr,sw
H

1
Rpsw1

)

. As a result, for the ex-
pectation in (53), one obtains

E|hss

{

log2

(

1 +

P1

N0,s
|wH

1 hss|2

1 + Y1

)}

= E|hss

{

log2

(

1 + Y1 +
P1

N0,s
|wH

1 hss|2
)}

− E|hss
{log2 (1 + Y1)} .

(55)

For the first term of (55), by exploiting [30, eq. (4.337.1)],we
obtain the following expression

E|hss

{

log2

(

1 + Y1 +
P1

N0,s
|wH

1 hss|2
)}

= log2 (A1) +
1

ln(2)
exp

(
A1

B1

)

E1

(
A1

B1

)

,

(56)

where quantitiesA1 andB1 have been defined in the statement
of the lemma. Also, exploiting [30, eq. (4.337.2)], one can
derive the second term of (55) as follows

E|hss
{log2 (1 + Y1)} =

1

ln(2)
exp

(
1

B1

)

E1

(
1

B1

)

. (57)

Substituting expressions (55) - (57) to (52), expression (16) is
obtained, which completes the proof.

APPENDIX D
PROOF OFLEMMA 3

The resulting single-variable objective function of (P4) is
expressed as

C̃(τ, ε(τ)) = α0C0,0 + β0C0,1 + α1D̂1,0 + β1D̂1,1, (58)

where αi, βi, i = 0, 1 have been defined in (8). Taking
the derivative of (58), with respect toτ and letting δ ,

N0,0

(

1 +
Pp

N0,0
σ2
0

)

andξ , Q−1(P̃d), we have

∂C̃(τ, ε(τ))
∂τ

=

− P0

T
(C0,0 + C0,1)

− P0

T
(D̂1,0 − C0,0)Q

(
√

τfs

(
δ

N0,0
− 1

)

+
δξ

N0,0

)

− (T − τ)P0(D̂1,0 − C0,0)
T
√
2π

× exp

(

−1

2

(
√

τfs

(
δ

N0,0
− 1

)

+
δξ

N0,0

)2
)

×
(

δ

N0,0
− 1

)
fs

2
√
τfs

− 1

T
Q(ξ)P1(D̂1,1 − C0,1).

(59)
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Taking now the derivative of (59) with respect toτ , one obtains

∂2C̃(τ, ε(τ))
∂τ2

=

P0(D̂1,0 − C0,0)

T
√
2π

× exp

(

−1

2

(

√

τfs

(

δ

N0,0

− 1

)

+
δξ

N0,0

)

2
)

×
(

δ

N0,0

− 1

)

fs√
τfs

+
(T − τ)P0(D̂1,0 − C0,0)

T
√
2π

(

√

τfs

(

δ

N0,0

− 1

)

+
δξ

N0,0

)

×
(

δ

N0,0

− 1

)

2
f2

s

4τfs
exp

(

−1

2

(

√

τfs

(

δ

N0,0

− 1

)

+
δξ

N0,0

)

2
)

+
(T − τ)P0(D̂1,0 − C0,0)

4T
√
2π

× exp

(

−1

2

(

√

τfs

(

δ

N0,0

− 1

)

+
δξ

N0,0

)

2
)

(

δ

N0,0

− 1

)

× fs(τfs)
−

3

2 .
(60)

In the above expression we haveδ
N0,0

− 1 =
Ppσ

2

0

N0,0
> 0. Also,

D̂1,0 − C0,0 < 0, since, when protection of primary com-
munication is required by means of a high value ofP̃d

and a low value ofP̃out, it holds that P ∗
1 < Ppeak and

|ŵH
1 hss|2 ≤ ‖hss‖2. As a result, ∂2C̃(τ,ε(τ))

∂τ2 < 0 and,
thus, according to the second derivative criterion, function
C̃(τ, ε(τ)) is concave whenτ ∈ (0, T ], which completes the
proof.

APPENDIX E
PROOF OFLEMMA 4

We define variablesx1 , Aeff (w1), x2 ,
Aeff(w1)
Beff(w1)

and func-
tion f(x1, x2) = f0(x1) + f1(x2), wheref0(x1) = α̂1 ln(x1)
andf1(x2) = β̂1(ln(x2) + exp(x2)E1(x2)).

One can easily observe that: (i) functionf0(x1) is defined
for x1 ∈ A0 , [λmin(Heff), λmax(Heff)] and it is concave in
the same interval and (ii) functionf1(x2) is defined forx2 ∈
A1 , [λmin(R

−1
eff Heff), λmax(R

−1
eff Heff)] and it is concave in

the same interval. Since the two single-variable functionsare
concave within their domains, it can be concluded that

• ∀x1 ∈ A0, f0(x1) ≥ z0 = κ1x1 + κ2, where line
z0 is defined by points(λmin(Heff), f0(λmin(Heff))) and
(λmax(Heff), f0(λmax(Heff))) and

• ∀x2 ∈ A1, f1(x2) ≥ z1 = µ1x2 + µ2, where linez1 is
defined by points(λmin(R

−1
eff Heff),

f1(λmin(R
−1
eff Heff))) and

(λmax(R
−1
eff Heff), f1(λmax(R

−1
eff Heff))).

As a result, instead of solving optimization problem

w∗
1 = arg max

w1∈CM×1,‖w1‖=1
f0(Aeff (w1)) + f1

(
Aeff (w1)

Beff (w1)

)

,

(P ′)
for fixed τ = τ̂ andε = ε̂, an approximated version of it can
be solved, where the new objective is a lower bound of the
objective of problem (P ′). This completes the proof.

APPENDIX F
PROOF OFPROPOSITION2

The optimal receive BF vector is obtained by solving the
following optimization problem at RXs:

w∗
1 = argmax

w1∈CM×1,‖w1‖=1

E|hss
{R1}, (P)

where an approximation of the objective for the investigated
regime is given by (20).

One can rewriteE|hss
{R1} as

E|hss
{R1} = V(µw1

), where µw1
,

Aeff (w1)

Beff (w1)
. (61)

Focusing on the fact that̃Pd → 1, P1 → 1, functionV(·) is
defined as

V(µw1
) ,

β̂1

ln(2)
(ln (µw1

) + exp(µw1
)E1 (µw1

) + γ) .

(62)
By differentiatingV(µw1

) and using [18, eq. (5.1.26)], one
can prove thatV(µw1

) is an increasing function ofµw1
. Con-

sequently, the optimization problem (P) is equivalent to the
Rayleigh - Ritz quotient maximization problem

w∗
1 = argmax

w1∈CM×1,‖w1‖=1

µw1
. (63)

By setting the derivative ofµw1
, with respect tow1, equal to

zero, it can be found that the optimal BF vector is the one
satisfying the equality

Heffw
∗
1 = µw1

Reffw
∗
1 . (64)

As a result, by inspecting (64), one can conclude that the
optimal BF vector for RXs is the Dominant Generalized
Eigenvector (DGE) of matrix pair(Heff,Reff).

APPENDIX G
PROOF OFPROPOSITION3

Focusing on an interweave CR system, the outage probabil-
ity of primary communication is defined as follows

Pout,int = (1− Pd)Pr

(

Pp‖hpp‖2
N0,p + Ppeak|h̃H

pphsp|2
< γ0

)

︸ ︷︷ ︸

Pout,int,1

+ PdPr

(
Pp‖hpp‖2

N0,p
< γ0

)

︸ ︷︷ ︸

Pout,int,2

.

(65)
Exploiting the proof steps of Appendix A, the first term of
(65), is given by

Pout,int,1 ≈ (1− Pd)F(Ppeak). (66)

The second term of (65), is given by the following expression

Pout,int,2 = PdPr
(
ρsnr,p‖hpp‖2 < γ0

)
. (67)

Since the PDF of RVZ1 = ρsnr,p‖hpp‖2, is known, we obtain

Pout,int,2 = Pd

∫ γ0

0

fZ1
(z1)dz1 = PdG, (68)

whereG is given in (36). This completes the proof.
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