1,183 research outputs found

    Performance analysis with wireless power transfer constraint policies in full-duplex relaying networks

    Get PDF
    In practice, full-duplex (FD) transmission mode not only helps extend the coverage but also lengthen network lifetime. In this paper, we develop wireless power supply policies, namely separated power (SP) and harvested power (HP) to propose a flexible architecture at the relay node in FD decode-and-forward (DF) relaying networks considering time switching-based relaying protocol (TSR) to achieve optimal time used for a communication process. This transmission mode requires more processing procedure at the relay, i.e. antenna installations and radio frequency (RF) self-interference cancellation. We evaluate the optimal power constraints in case of SP and HP to achieve better power consumption efficiency at the relay node. More importantly, closed-form expressions for outage probability and throughput are provided, and we also use numerical and simulation results to compare SP with HP.Web of Science234767

    Energy harvesting based two-way full-duplex relaying network over a Rician fading environment: performance analysis

    Get PDF
    Full-duplex transmission is a promising technique to enhance the capacity of communication systems. In this paper, we propose and investigate the system performance of an energy harvesting based two-way full-duplex relaying network over a Rician fading environment. Firstly, we analyse and demonstrate the analytical expressions of the achievable throughput, outage probability, optimal time switching factor, and symbol error ratio of the proposed system. In the second step, the effect of various parameters of the system on its performance is presented and investigated. In the final step, the analytical results are also demonstrated by Monte Carlo simulation. The numerical results proved that the analytical results and the simulation results agreed with each other.Web of Science68112311

    Improving performance of far users in cognitive radio: Exploiting NOMA and wireless power transfer

    Get PDF
    In this paper, we examine non-orthogonal multiple access (NOMA) and relay selection strategy to benefit extra advantage from traditional cognitive radio (CR) relaying systems. The most important requirement to prolong lifetime of such network is employing energy harvesting in the relay to address network with limited power constraint. In particular, we study such energy harvesting CR-NOMA using amplify-and-forward (AF) scheme to improve performance far NOMA users. To further address such problem, two schemes are investigated in term of number of selected relays. To further examine system performance, the outage performance needs to be studied for such wireless powered CR-NOMA network over Rayleigh channels. The accurate expressions for the outage probability are derived to perform outage comparison of primary network and secondary network. The analytical results show clearly that position of these nodes, transmit signal to noise ratio (SNR) and power allocation coefficients result in varying outage performance. As main observation, performance gap between primary and secondary destination is decided by both power allocation factors and selection mode of single relay or multiple relays. Numerical studies were conducted to verify our derivations.Web of Science1211art. no. 220

    Multi-source in DF cooperative networks with the PSR protocol based full-duplex energy harvesting over a Rayleigh fading channel: performance analysis

    Get PDF
    Due to the tremendous energy consumption growth with ever-increasing connected devices, alternative wireless information and power transfer techniques are important not only for theoretical research but also for saving operational costs and for a sustainable growth of wireless communications. In this paper, we investigate the multi-source in decode-and-forward cooperative networks with the power splitting protocol based full-duplex energy harvesting relaying network over a Rayleigh fading channel. In this system model, the multi-source and the destination communicate with each other by both the direct link and an intermediate helping relay. First, we investigate source selection for the best system performance. Then, the closed-form expression of the outage probability and the symbol error ratio are derived. Finally, the Monte Carlo simulation is used for validating the analytical expressions in connection with all main possible system parameters. The research results show that the analytical and simulation results matched well with each other.Web of Science68327526
    corecore