5,848 research outputs found

    Content Delivery Analysis in Multiple Devices to Single Device Communications

    Get PDF
    Content caching at mobile user devices (UDs) utilizing device to device (D2D) communications is a promising technology to enhance the performance of mobile networks, in terms of latency, throughput, energy consumption, and so on. In this paper, a novel method of content delivery using multiple devices to single device (MDSD) communications through D2D links is presented. In this method, the Zipf distribution with exponent shape parameter is adopted to model the content caching popularity for the analysis of the achievable signal to interference plus noise ratio (SINR). In order to investigate the advantage of the proposed MDSD method, firstly, a closedform expression of the outage probability is theoretically derived for a single D2D communication to evaluate the success of content delivery to a reference UD. Secondly, the expression of the outage probability for MDSD communication is derived, where the outage probability is modeled as a function of content caching popularity, the density of UDs, and the size of cooperative area. The research work is further extended to address the frequency reuse among different UDs in one cell, where a frequency band factor is introduced, and the optimal radius of the cooperative area is introduced and analysed. The analytical results, validated by the simulation results, show that the outage probability decreases drastically when the popularity of the content increases, or the radius of the cooperative area increases. Using the given closed-form expression of the outage probability, the area spectral efficiency (ASE) of the system is presented. Furthermore, the results show that as the frequency band factor increases, the outage probability decreases, as well as the ASE decreases. Finally, it is shown that the MDSD outperforms the single D2D-based method

    Exploiting Tradeoff Between Transmission Diversity and Content Diversity in Multi-Cell Edge Caching

    Full text link
    Caching in multi-cell networks faces a well-known dilemma, i.e., to cache same contents among multiple edge nodes (ENs) to enable transmission cooperation/diversity for higher transmission efficiency, or to cache different contents to enable content diversity for higher cache hit rate. In this work, we introduce a partition-based caching to exploit the tradeoff between transmission diversity and content diversity in a multi-cell edge caching networks with single user only. The performance is characterized by the system average outage probability, which can be viewed as the sum of the cache hit outage probability and cache miss probability. We show that (i) In the low signal-to-noise ratio(SNR) region, the ENs are encouraged to cache more fractions of the most popular files so as to better exploit the transmission diversity for the most popular content; (ii) In the high SNR region, the ENs are encouraged to cache more files with less fractions of each so as to better exploit the content diversity.Comment: Accepted by IEEE International Conference on Communications (ICC), Kansas City, MO, USA, May 201

    End to End Performance Analysis of Relay Cooperative Communication Based on Parked Cars

    Full text link
    Parking lots (PLs) are usually full with cars. If these cars are formed into a self-organizing vehicular network, they can be new kind of road side units (RSUs) in urban area to provide communication data forwarding between mobile terminals nearby and a base station. However cars in PLs can leave at any time, which is neglected in the existing studies. In this paper, we investigate relay cooperative communication based on parked cars in PLs. Taking the impact of the car's leaving behavior into consideration, we derive the expressions of outage probability in a two-hop cooperative communication and its link capacity. Finally, the numerical results show that the impact of a car's arriving time is greater than the impact of the duration the car has parked on outage probability.Comment: 7 pages, 7 figures, accepted by ICACT201

    A Survey on Applications of Cache-Aided NOMA

    Get PDF
    Contrary to orthogonal multiple-access (OMA), non-orthogonal multiple-access (NOMA) schemes can serve a pool of users without exploiting the scarce frequency or time domain resources. This is useful in meeting the future network requirements (5G and beyond systems), such as, low latency, massive connectivity, users' fairness, and high spectral efficiency. On the other hand, content caching restricts duplicate data transmission by storing popular contents in advance at the network edge which reduces data traffic. In this survey, we focus on cache-aided NOMA-based wireless networks which can reap the benefits of both cache and NOMA; switching to NOMA from OMA enables cache-aided networks to push additional files to content servers in parallel and improve the cache hit probability. Beginning with fundamentals of the cache-aided NOMA technology, we summarize the performance goals of cache-aided NOMA systems, present the associated design challenges, and categorize the recent related literature based on their application verticals. Concomitant standardization activities and open research challenges are highlighted as well
    • …
    corecore