14 research outputs found

    Computational Network Analysis of the Anatomical and Genetic Organizations in the Mouse Brain

    Get PDF
    Motivation: The mammalian central nervous system (CNS) generates high-level behavior and cognitive functions. Elucidating the anatomical and genetic organizations in the CNS is a key step toward understanding the functional brain circuitry. The CNS contains an enormous number of cell types, each with unique gene expression patterns. Therefore, it is of central importance to capture the spatial expression patterns in the brain. Currently, genome-wide atlas of spatial expression patterns in the mouse brain has been made available, and the data are in the form of aligned 3D data arrays. The sheer volume and complexity of these data pose significant challenges for efficient computational analysis. Results: We employ data reduction and network modeling techniques to explore the anatomical and genetic organizations in the mouse brain. First, to reduce the volume of data, we propose to apply tensor factorization techniques to reduce the data volumes. This tensor formulation treats the stack of 3D volumes as a 4D data array, thereby preserving the mouse brain geometry. We then model the anatomical and genetic organizations as graphical models. To improve the robustness and efficiency of network modeling, we employ stable model selection and efficient sparsity-regularized formulation. Results on network modeling show that our efforts recover known interactions and predicts novel putative correlations

    Empirical Evaluation of Four Tensor Decomposition Algorithms

    Get PDF
    Higher-order tensor decompositions are analogous to the familiar Singular Value Decomposition (SVD), but they transcend the limitations of matrices (second-order tensors). SVD is a powerful tool that has achieved impressive results in information retrieval, collaborative filtering, computational linguistics, computational vision, and other fields. However, SVD is limited to two-dimensional arrays of data (two modes), and many potential applications have three or more modes, which require higher-order tensor decompositions. This paper evaluates four algorithms for higher-order tensor decomposition: Higher-Order Singular Value Decomposition (HO-SVD), Higher-Order Orthogonal Iteration (HOOI), Slice Projection (SP), and Multislice Projection (MP). We measure the time (elapsed run time), space (RAM and disk space requirements), and fit (tensor reconstruction accuracy) of the four algorithms, under a variety of conditions. We find that standard implementations of HO-SVD and HOOI do not scale up to larger tensors, due to increasing RAM requirements. We recommend HOOI for tensors that are small enough for the available RAM and MP for larger tensors

    Tensor Approximation for Multidimensional and Multivariate Data

    Full text link
    Tensor decomposition methods and multilinear algebra are powerful tools to cope with challenges around multidimensional and multivariate data in computer graphics, image processing and data visualization, in particular with respect to compact representation and processing of increasingly large-scale data sets. Initially proposed as an extension of the concept of matrix rank for 3 and more dimensions, tensor decomposition methods have found applications in a remarkably wide range of disciplines. We briefly review the main concepts of tensor decompositions and their application to multidimensional visual data. Furthermore, we will include a first outlook on porting these techniques to multivariate data such as vector and tensor fields

    Low rank tensor recovery via iterative hard thresholding

    Full text link
    We study extensions of compressive sensing and low rank matrix recovery (matrix completion) to the recovery of low rank tensors of higher order from a small number of linear measurements. While the theoretical understanding of low rank matrix recovery is already well-developed, only few contributions on the low rank tensor recovery problem are available so far. In this paper, we introduce versions of the iterative hard thresholding algorithm for several tensor decompositions, namely the higher order singular value decomposition (HOSVD), the tensor train format (TT), and the general hierarchical Tucker decomposition (HT). We provide a partial convergence result for these algorithms which is based on a variant of the restricted isometry property of the measurement operator adapted to the tensor decomposition at hand that induces a corresponding notion of tensor rank. We show that subgaussian measurement ensembles satisfy the tensor restricted isometry property with high probability under a certain almost optimal bound on the number of measurements which depends on the corresponding tensor format. These bounds are extended to partial Fourier maps combined with random sign flips of the tensor entries. Finally, we illustrate the performance of iterative hard thresholding methods for tensor recovery via numerical experiments where we consider recovery from Gaussian random measurements, tensor completion (recovery of missing entries), and Fourier measurements for third order tensors.Comment: 34 page

    Tensor displays: compressive light field synthesis using multilayer displays with directional backlighting

    Get PDF
    We introduce tensor displays: a family of compressive light field displays comprising all architectures employing a stack of time-multiplexed, light-attenuating layers illuminated by uniform or directional backlighting (i.e., any low-resolution light field emitter). We show that the light field emitted by an N-layer, M-frame tensor display can be represented by an Nth-order, rank-M tensor. Using this representation we introduce a unified optimization framework, based on nonnegative tensor factorization (NTF), encompassing all tensor display architectures. This framework is the first to allow joint multilayer, multiframe light field decompositions, significantly reducing artifacts observed with prior multilayer-only and multiframe-only decompositions; it is also the first optimization method for designs combining multiple layers with directional backlighting. We verify the benefits and limitations of tensor displays by constructing a prototype using modified LCD panels and a custom integral imaging backlight. Our efficient, GPU-based NTF implementation enables interactive applications. Through simulations and experiments we show that tensor displays reveal practical architectures with greater depths of field, wider fields of view, and thinner form factors, compared to prior automultiscopic displays.United States. Defense Advanced Research Projects Agency (DARPA SCENICC program)National Science Foundation (U.S.) (NSF Grant IIS-1116452)United States. Defense Advanced Research Projects Agency (DARPA MOSAIC program)United States. Defense Advanced Research Projects Agency (DARPA Young Faculty Award)Alfred P. Sloan Foundation (Fellowship

    Tensor Networks for Big Data Analytics and Large-Scale Optimization Problems

    Full text link
    In this paper we review basic and emerging models and associated algorithms for large-scale tensor networks, especially Tensor Train (TT) decompositions using novel mathematical and graphical representations. We discus the concept of tensorization (i.e., creating very high-order tensors from lower-order original data) and super compression of data achieved via quantized tensor train (QTT) networks. The purpose of a tensorization and quantization is to achieve, via low-rank tensor approximations "super" compression, and meaningful, compact representation of structured data. The main objective of this paper is to show how tensor networks can be used to solve a wide class of big data optimization problems (that are far from tractable by classical numerical methods) by applying tensorization and performing all operations using relatively small size matrices and tensors and applying iteratively optimized and approximative tensor contractions. Keywords: Tensor networks, tensor train (TT) decompositions, matrix product states (MPS), matrix product operators (MPO), basic tensor operations, tensorization, distributed representation od data optimization problems for very large-scale problems: generalized eigenvalue decomposition (GEVD), PCA/SVD, canonical correlation analysis (CCA).Comment: arXiv admin note: text overlap with arXiv:1403.204

    Constant-Cost Spatio-Angular Prefiltering of Glinty Appearance Using Tensor Decomposition

    Get PDF
    International audienceThe detailed glinty appearance from complex surface microstructures enhances the level of realism but is both - and time-consuming to render, especially when viewed from far away (large spatial coverage) and/or illuminated by area lights (large angular coverage). In this article, we formulate the glinty appearance rendering process as a spatio-angular range query problem of the Normal Distribution Functions (NDFs), and introduce an efficient spatio-angular prefiltering solution to it. We start by exhaustively precomputing all possible NDFs with differently sized positional coverages. Then we compress the precomputed data using tensor rank decomposition, which enables accurate and fast angular range queries. With our spatio-angular prefiltering scheme, we are able to solve both the storage and performance issues at the same time, leading to efficient rendering of glinty appearance with both constant storage and constant performance, regardless of the range of spatio-angular queries. Finally, we demonstrate that our method easily applies to practical rendering applications that were traditionally considered difficult. For example, efficient bidirectional reflection distribution function evaluation accurate NDF importance sampling, fast global illumination between glinty objects, high-frequency preserving rendering with environment lighting, and tile-based synthesis of glinty appearance

    Out-of-core tensor approximation of multi-dimensional matrices of visual data

    No full text
    Tensor approximation is necessary to obtain compact multilinear models for multi-dimensional visual datasets. Traditionally, each multi-dimensional data item is represented as a vector. Such a scheme flattens the data and partially destroys the internal structures established throughout the multiple dimensions. In this paper, we retain the original dimensionality of the data items to more effectively exploit existing spatial redundancy and allow more efficient computation. Since the size of visual datasets can easily exceed the memory capacity of a single machine, we also present an outof-core algorithm for higher-order tensor approximation. The basic idea is to partition a tensor into smaller blocks and perform tensorrelated operations blockwise. We have successfully applied our techniques to three graphics-related data-driven models, including 6D bidirectional texture functions, 7D dynamic BTFs and 4D volume simulation sequences. Experimental results indicate that our techniques can not only process out-of-core data, but also achieve higher compression ratios and quality than previous methods
    corecore