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ABSTRACT

Motivation: The mammalian central nervous system (CNS)
generates high-level behavior and cognitive functions. Elucidating
the anatomical and genetic organizations in the CNS is a key
step toward understanding the functional brain circuitry. The CNS
contains an enormous number of cell types, each with unique gene
expression patterns. Therefore, it is of central importance to capture
the spatial expression patterns in the brain. Currently, genome-wide
atlas of spatial expression patterns in the mouse brain has been
made available, and the data are in the form of aligned 3D data arrays.
The sheer volume and complexity of these data pose significant
challenges for efficient computational analysis.
Results: We employ data reduction and network modeling
techniques to explore the anatomical and genetic organizations in
the mouse brain. First, to reduce the volume of data, we propose to
apply tensor factorization techniques to reduce the data volumes.
This tensor formulation treats the stack of 3D volumes as a 4D
data array, thereby preserving the mouse brain geometry. We then
model the anatomical and genetic organizations as graphical models.
To improve the robustness and efficiency of network modeling,
we employ stable model selection and efficient sparsity-regularized
formulation. Results on network modeling show that our efforts
recover known interactions and predicts novel putative correlations.
Availability: The complete results are available at the project
website: http://compbio.cs.odu.edu/mouse/
Contact: sji@cs.odu.edu
Supplementary Information: Supplementary data are available at
Bioinformatics online.

Received on May 2, 2011; revised on October 1, 2011; accepted on
October 3, 2011

1 INTRODUCTION
The mammalian central nervous system (CNS) generates high-level
control functions, and knowledge on the anatomical and genetic
organizations in this system can elucidate the functional brain
circuitry. The enormous complexity of this system is reflected in
the large number of cell types, each with unique gene expression
patterns. Therefore, it is of central importance to capture the
anatomical localization of gene expressions in the brain. Recent
advances in bioimaging technologies, such as the high-throughput
in situ hybridization (ISH) technique, have made it possible to
capture the spatial expression patterns in the adult mouse brain (Lein
et al., 2007). Consequently, genomic-scale expression atlases in the
form of digital images have been produced at increasing speed and

resolution. The marriage of image processing tools and advanced
computational methods opens the door for unraveling the functional
brain circuitry and the generation of high-level cognitive functions
on top of it.

The Allen Brain Atlas (ABA) (Lein et al., 2007) contains 3D
atlas of gene expression in the adult mouse brain and is one of
the most comprehensive datasets for spatial expression patterns in
the mammalian CNS. It provides cellular resolution 3D expression
patterns in the male, 56-day-old C57BL mouse brain. In this atlas,
genome-wide coverage is available in sagitally oriented sections. In
addition, coronal sections at a more refined scale are available for
a set of about 4000 genes showing restricted expression patterns.
The image data are generated by in situ hybridization using gene-
specific probes, followed by slide scanning, 3D image registration
to the Allen Reference Atlas (ARA) (Dong, 2009) and expression
segmentation (Lein et al., 2007; Ng et al., 2007). This results in
a set of spatially aligned 3D volumes of size 67×41×58, one for
each gene, that document the spatial expression patterns of genes
in the mouse brain. Efficient and effective analysis of these high-
throughput data can shed light on the global function of mammalian
CNS (Jones et al., 2009). On the other hand, the sheer volume and
complexity of these data pose significant challenges for efficient
computational analysis. Hence, computational understanding of
these data is limited to unsupervised techniques, which cluster the
brain regions into co-expressed groups (Bohland et al., 2010).

In this article, we employ advanced computational techniques to
model the anatomical and genetic organizations in the mouse brain
as networks. First, to reduce the size of data and accelerate efficient
analysis and storage, we propose to apply tensor factorization
techniques to reduce the data volumes (Kolda and Bader, 2009;
Wrede, 1972). This tensor formulation treats the stack of 3D volumes
as a 4D data array, thereby preserving the mouse brain geometry.
Based on the reduced data, we model the anatomical and genetic
organizations as graphical models in which each vertex represents
a spatial location or a gene, and the edges between vertices encode
the correlations between locations and genes (Dempster, 1972;
Edwards, 2000). To improve the efficiency of network modeling,
we employ an approximate formulation for Gaussian graphical
modeling, which involves a series of sparsity regularized regression
problems (Meinshausen and Bühlmann, 2006). The efficiency of this
approximate formulation enables us to employ a robust estimation
technique known as stability selection (Meinshausen and Bühlmann,
2010), which estimate and combine multiple models based on
resampling.

We apply the data reduction and network modeling techniques
to learn the anatomical and genetic networks underlying the mouse
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brain using the ABA expression volume data. Results show that the
expression patterns of spatially adjacent voxels tend to correlate. We
also observe that the expression patterns of certain brain structures
are correlated to the patterns of a large number of other regions,
some of which are spatially distant. In-depth analysis reveals that
such correlation patterns recover existing knowledge on the brain
functionality. Our efforts on genetic network modeling identify
functionally related genes that act in a concerted manner in the
mouse brain.

2 HIGH-ORDER FEATURE EXTRACTION VIA
TENSOR FACTORIZATION

In ABA, the ISH image series of each gene are aligned to the ARA. To
faithfully capture the mouse brain geometry, a 3D grid is employed to divide
the 3D ARA space into quadrats, and expression information within each
quadrat is summarized. Specifically, an expression segmentation algorithm
is employed to identify expressed cells, and then an expression energy value
is computed from each voxel as a function of the intensity and density of
expression within that voxel. These image processing steps convert each
expression pattern into a 3D volume. To enable the application of matrix
computation techniques such as the singular value decomposition (SVD),
these volumes are usually converted to vectors and stacked into a data
matrix (Bohland et al., 2010). However, such conversion fails to retain the
spatial locality and other high-order information in the expression volumes.
To overcome this limitation, we propose to treat the 3D volumes as 3D
tensors and stack them together to form a 4D tensor. We then employ tensor
factorization techniques to reduce the dimensionality of this 4D tensor along
each mode, resulting in significant data compression.

A key advantage of this tensor representation is that the associated
tensor computation techniques, such as high-order SVD and low-rank tensor
approximation, can be employed to compress the data without flattening the
internal structure of the high-order data array. These techniques approximate
the original tensor by a core tensor multiplied by a basis matrix along each
mode. Hence, the core tensor and the set of basis matrices give a compact
representation of the original tensor, and the core tensor captures the major
information in the original tensor.

2.1 Background on tensors
Tensors, also known as multidimensional matrices (Kolda and Bader, 2009;
Wrede, 1972), are higher order generalizations of vectors (first-order tensors)
and matrices (second-order tensors). The order of a tensor is the number
of indices, also known as modes or ways. In this article, tensors are
denoted by boldface Euler script letters, e.g. X ∈R

J1×J2×...×JN , and its
elements are denoted as xj1,j2,...,jN , where 1≤ jn ≤Jn for n=1,...,N . As a
generalization of matrix multiplication, the n-mode tensor-matrix product
defines the multiplication of a tensor by a matrix in mode n (Lathauwer
et al., 2000a). The n-mode product of a tensor X ∈R

J1×J2×...×JN with a
matrix A∈R

I×Jn = (aijn ) is denoted by X ×n A. The result is a tensor of size
J1 × ...×Jn−1 ×I ×Jn+1 × ...×JN defined elementwise as

(X ×n A)j1 ...jn−1 ijn+1 ...jN =
Jn∑

jn=1

xj1 ...jn−1 jnjn+1 ...jN aijn .

Let Y ∈R
J1×J2×...×JN be another tensor of the same size as X . The scalar

product of these two tensors is defined as:

<X ,Y >=
J1∑

j1=1

J2∑

j2=1

...

JN∑

jN =1

xj1,j2,...,jN yj1,j2,...,jN . (1)

Based on the scalar product, the Frobenius norm of a tensor X can be
defined as

‖X ‖=
√

<X ,X >. (2)

=

Fig. 1. Illustration of tensor factorization. The three-way tensor on the left
is factorized into the products of a core tensor and three basis matrices on
the right.

The mode-n vectors of X are the Jn-dimensional vectors obtained from
X by varying index jn while keeping all other indices fixed. Tensors can
be converted into matrices via a process known as unfolding (Kolda and
Bader, 2009). Specifically, the mode-n unfolding of X yields a matrix X(n) ∈
R

Jn×(J1J2 ...Jn−1Jn+1 ...JN ) whose columns consist of the mode-n vectors of X .
The mode-n rank of X , denoted as rankn(X ), is defined as the rank of
the matrix obtained from mode-n unfolding of X : rankn(X )= rank(X(n)).
Tensors have been used in a wide range of domains including microarray
data analysis (Omberg et al., 2007) and natural image modeling (Vasilescu
and Terzopoulos, 2004; Wang et al., 2005).

2.2 Tensor factorization
High-order singular value decomposition (HOSVD) (Lathauwer et al.,
2000a) is a generalization of the SVD for matrices. Given a tensor X ∈
R

J1×J2×...×JN , its HOSVD can be expressed as

X =S ×1 U(1) ×2 U(2) ×···×N U(N), (3)

where S ∈R
J1×J2×···×JN , and U(n) ∈R

Jn×Jn , for n=1,...,N , are orthogonal
matrices. In HOSVD, the basis matrices {U(n)}N

n=1 are computed as the left
singular matrices of the mode-n unfolding of X , and the core tensor can
then be computed as

S =X ×1 (U(1))T ×···×N (U(N))T . (4)

Given a tensor X ∈R
J1×J2×···×JN , a rank-(R1,...,RN ) factorization of

X (Lathauwer et al., 2000b) is formulated as finding a tensor X̂ with
rankn(X̂ )=Rn ≤ rankn(X ) for 1≤n≤N such that the following cost
function is minimized:

X̂ =arg min
X̂

‖X −X̂ ‖. (5)

It follows from this definition that X̂ can be expressed as

X̂ =C ×1 V (1) ×2 V (2) ×···×N V (N), (6)

where C ∈R
R1×R2×···×RN is called the core tensor and V (n) ∈R

Jn×Rn

(1≤n≤ N) has orthonormal columns. When the basis matrices {V (n)}N
n=1

are given, the core tensor C can be readily computed as Lathauwer et al.
(2000a)

C =X ×1 (V (1))T ×2 (V (2))T ×···×N (V (N))T . (7)

Hence, the key to the low-rank tensor factorization problem is to compute
the basis matrices. The factorization of a 3D tensor is illustrated in Figure 1.

One of the commonly used algorithms to compute the basis matrices is
the alternating least squares (ALS) method (Lathauwer et al., 2000b). In
each iteration of this method, one of the basis matrices is optimized while all
others are fixed. Specifically, when V (1),...,V (n−1),V (n+1),...,V (N) are fixed,
we first compute X n =X ×1 (V (1))T ×···×n−1 (V (n−1))T ×n+1 (V (n+1))T ×
···×N (V (N))T . Then the columns of V (n) can be obtained as the first Rn

columns of the left singular matrix of (X n)(n), which is the mode-n unfolding
of X n. InALS, the basis matrices are usually initialized as the truncated basis
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matrices from HOSVD (Lathauwer et al., 2000b). That is, V (n) is initialized
as the first Rn columns of U(n), for n=1,...,N . When the size of the tensor
is very large and cannot fit into memory, an out-of-core algorithm can be
applied by partitioning the tensor into blocks (Wang et al., 2005).

The advantages of tensor-based methods in comparison to matrix-based
approaches have been addressed in the literature (Omberg et al., 2007;
Vasilescu and Terzopoulos, 2004; Wang et al., 2005). In summary, tensor-
based methods have the following two major advantages: (i) tensor-based
methods can be applied to large datasets for which matrix-based methods are
too expensive to apply. For example, the size of the data array for genetic
network modeling in this article is 3012×67×41×58. While the tensor-
based method requires the SVD of three matrices of sizes 67×67, 41×41,
and 58×58, respectively, the matrix-based method requires the SVD of a
matrix of size 3012×159,326. (ii) Although matrix-based methods give the
lowest reconstruction error due to the best low-rank approximation property
of matrix SVD, tensor-based methods preserve the geometry of the high-
order data array. In the literature, tensor-based and matrix-based methods
have been compared in classification tasks (Ye, 2005). Specifically, it has
been shown that, though tensor-based methods give larger reconstruction
error, they usually yield higher classification accuracy.

3 NETWORK CONSTRUCTION VIA SPARSE
MODELING

The 4D tensor of gene expression obtained from the ABA is factorized as
described above. The core tensor retains most of the information in the
original tensor while its size is significantly reduced. This data reduction step
is critical for the subsequent efficient analysis. Based on the reduced data, we
employ sparse graphical modeling approaches to construct the anatomical
and genetic networks underlying the mouse brain.

3.1 A sparsity regularization formulation
Gaussian graphical models are a class of methods for modeling the
relationships among a set of variables (Edwards, 2000; Whittaker, 1990). In
this formulation, the d-dimensional variable x=[x1,x2,...,xd ]T is assume
to follow a multivariate Gaussian distribution x∼N(μ,�), where μ∈R

d

and �∈R
d×d are the mean and covariance, respectively. The conditional

dependency between pairs of variables can be encoded into a graphical
model in which vertices represent variables and edges characterize the
conditional dependency between variables. In particular, there is an edge
between nodes corresponding to xi and xj if and only if these two variables
are conditionally dependent given all other variables. This is equivalent to
the saying that there exists an edge between nodes corresponding to xi and xj

if and only if the (i,j)-th entry of the inverse covariance matrix (also known
as concentration matrix) �=�−1 is non-zero (Dempster, 1972; Edwards,
2000). This correspondence is illustrated in Figure 2.

Given a set of n observations y1,y2,...,yn, the concentration matrix can be
estimated by maximizing the penalized log likelihood as follows (Banerjee
et al., 2008; Friedman et al., 2008; Yuan and Lin, 2007):

�̂=arg max
��0

logdet�−trace(S�)−λ‖�‖1, (8)

where det� is the determinant of �, ��0 represents that � is positive
definite, S denotes the empirical covariance matrix computed from data,
and ‖�‖1 is the 1-norm of �, which is the sum of the absolute values of the
entries of �. The first two terms in Equation (8) are the log likelihood, and the
last term is used to enforce that many entries of � are set to zero, yielding
a sparsely connected graph. This formulation has been used to model the
gene networks in Arabidopsis thaliana (Wille et al., 2004). The optimization
problem in Equation (8) is convex and can be solved by several algorithms
such as the interior point method (Banerjee et al., 2008) and the graphical
lasso algorithm (Friedman et al., 2008). However, all these algorithms are
computationally expensive and can only be applied to small-scale problems.
For the modeling of mouse brain networks, we have thousands of genes and
tens of thousands of voxels; hence, this formulation is not applicable.

1 2 3 4

5

A B

Fig. 2. Illustration of the concentration matrix (A) and the corresponding
graphical model (B). The zero entries in the concentration matrix are unfilled
while the non-zero entries are filled with green. In this example, x1 and x5

are conditionally independent given all other variables.

In Meinshausen and Bühlmann (2006), an approximate formulation is
proposed to learn Gaussian graphical models by solving a series of sparse
regression problems. Specifically, the conditional dependencies between xi

and all other variables are learned by solving the following 1-norm penalized
regression problem known as lasso (Tibshirani, 1996):

ŵ=arg min
w∈Rd−1

‖yi −Y−iw‖2 +λ‖w‖1, (9)

where Y−i =[y1,...,yi−1,yi+1,...,yn]∈R
d×(n−1) is the data matrix obtained

by removing the i-th data item. The conditional dependencies between xi

and all other variables are obtained from the corresponding components in
the weight vector w. Note that the regression of xi onto xj and that of xj

onto xi may not give the same result. Hence, two simple schemes, based
on logic operations or and and, are proposed to interpret the results. In the
first scheme, two variables are considered to be conditionally dependent
if either of them yields non-zero weight (Meinshausen and Bühlmann,
2006). In the second scheme, they are considered as conditionally dependent
if both of them give non-zero weights. The first scheme is employed in
this work (Meinshausen and Bühlmann, 2006). The pairwise relationships
between all pairs of variables can be obtained by running the sparse
regression problem in Equation (9) for each variable. A critical observation
that leads to the efficiency of the formulation in Equation (9) is that it
involves solving d independent lasso problems, one for each variable. The
lasso problem can be solved very efficiently by many algorithms such as the
accelerated gradient method (Liu et al., 2009). It has been shown that this
sparse regression formulation of Gaussian graphical modeling maximizes
the pseudo likelihood (Friedman et al., 2010) and is an approximation to the
maximum likelihood scheme in Equation (8) (Banerjee et al., 2008; Friedman
et al., 2008). In particular, the exact maximization of log likelihood involves
solving the lasso problems iteratively as in the graphical lasso algorithm
(Friedman et al., 2008), and the formulation in Equation (9) can be considered
as a one-step approximation to the maximum likelihood scheme. We employ
this approximate formulation to learn the mouse brain networks due to its
efficiency.

3.2 Robust estimation via stability selection
The regularization parameter λ in Equation (9) controls the trade-off between
the sparsity of solution and data fit. Specifically, when λ is set to a very
large value, most of the entries of w are set to zero. Hence, a challenge in
practice is how to select the value for λ. Stability selection (Meinshausen and
Bühlmann, 2010) addresses this problem by ideas similar to the ensemble
learning methods widely used in machine learning (Bühlmann, 2004). In
stability selection, we choose a set of λ values denoted by �, instead of a
single λ value. For each λ∈�, we compute the selection probability for each
variable, which is defined as the probability of each variable been selected
when randomly resampling from the data. Formally, let I be a random
subsample of y1,y2,...,yn of size �n/2� drawn without replacement. The
selection probability for variable xi is defined as

�̂λ
xi

=P{xi ⊆Aλ(I)}, (10)
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where Aλ(I) denotes the set of variables that have been selected when I
is used as the sample and the regularization parameter is set to λ. Note
that this definition of Aλ(I) is independent of the specific method used
for variable selection. The probability in Equation (10) is with respect to
both the random sampling and other sources of randomness such as that
induced by the algorithm as we discuss below. For every variable xi, the
stability path is given by the selection probabilities �̂λ

xi
,λ∈�. It has been

shown in Meinshausen and Bühlmann (2010) that 100 random resampling
is sufficient to obtain accurate estimates.

Based on the selection probabilities, stable variables can be defined. For
a cutoff πthr with 0<πthr <1 and a set of parameters �, the set of stable
variables are defined as

Ŝstable ={xi :max
λ∈�

(�̂λ
xi

)≥πthr}. (11)

By choosing the set of stable variables under the control of the cutoff πthr, we
keep variables with a high selection probability and discard those with low
selection probabilities. It has been show that the results of stability selection
vary little for sensible choices of the cutoff πthr and the parameter set �.

It has also been shown that performance can be further improved if
additional randomness is introduced into the lasso problem in Equation (9). In
particular, we can randomize the amount of regularization for each variable
by solving the following problem:

ŵ=arg min
w∈Rd−1

‖yi −Y−iw‖2 +λ
∑

k∈D−i
d

|wk |
ck

, (12)

where D−i
d ={1,...,i−1,i+1,...,d}, ci are IID random variables in [α,1]

and α∈ (0,1] is a user-specified weakness factor.

4 RESULTS AND DISCUSSION

4.1 Experimental setup
In this article, we use a set of expression volumes for 3012 genes
documented in the coronal sections as in Bohland et al. (2010). This
set of genes exhibit restricted expression patterns and thus are of high
neurobiological interest. For anatomical network modeling, we only
use the left hemisphere voxels, since only this part of the brain is
annotated in ARA. This gives rise to a 4D tensor of size 3012×
67×41×33 in which the first index corresponds to genes, and the
other three indices represent the rostral–caudal, dorsal–ventral and
left–right spatial directions, respectively. In tensor factorization, we
keep the dimensionality of the last three modes while reduce the
dimensionality of the first mode, since we are interested in modeling
the relationships among brain voxels. For genetic network modeling,
we use the full volumes, and the size of our 4D tensor is 3012×67×
41×58. In this case, we keep the dimensionality of the first mode
while reducing the dimensionality of the other three modes.

The computational experiments were performed on a cluster
consisting of 256 cores and 512 GB RAM. The lasso formulation was
solved using the SLEP package (Liu et al., 2009). We can determine
the λ value that enforces w to be a zero vector in Equation (9) (Liu
et al., 2009), and this λ value is denoted as λmax. Then we
set �={0.1λmax,0.2λmax,...,0.9λmax}. The selection probabilities
were estimated on 100 random resampling, and the weakness
factor α was set to 0.8. The sizes of reduced data were set to
retain 90 and 80% of the original information for anatomical and
genetic network modeling, respectively, based on the computational
resource requirements. Specifically, the size of the reduced tensor is
179×67×41×33 in anatomical network modeling and is 3012×
22×13×19 in genetic network modeling.

Fig. 3. Sample correlation patterns from the coronal view when the cutoff
πthr =0.3. The vertices are color-coded according to the ARA annotations.
Each vertex is labeled with the ARA informatics ID of the brain structure,
and the corresponding structure name is given in Supplementary Table S2.

4.2 Results on anatomical network modeling
Computational modeling of the anatomical organization in the
mouse brain yields a graph in 3D space in which the vertices
represent brain regions, and the edges characterize the expression
correlations between regions. The correlation patterns can be
visualized by showing slices of the 3D brain network on 2D planes.
Figure 3 shows one slice of the brain network along the coronal
section. We can observe that most of the edges connect adjacent
regions, showing that spatially adjacent regions tend to exhibit
correlated expression patterns. Note that these correlation patterns
are learned without knowing the spatial locations of voxels.

Although most of the edges connect spatially adjacent regions,
there are apparent exceptions. A slice-by-slice examination of the
entire anatomical networks at multiple cutoffs reveal that the voxels
annotated as dentate gyrus (DG) in the ARA are highly correlated to
many voxels in distant regions as shown in Figure 4. According to
classical neuroanatomy, the DG plays an important role in learning
and memory by processing and representing spatial information,
and it has always been a topic of intense interest (Scharfman, 2007).
It has been shown that the DG receives multiple sensory inputs
including vestibular, olfactory, visual, auditory and somatosensory
from its upstream perirhinal cortex and entorhinal cortex. It plays
the role of a gate or filter, blocking or filtering excitatory activity
from the inputs and controlling the amount of excitation that is
propagated to the downstream hippocampus (Scharfman, 2007). A
close examination of Figure 4 shows that the correlation patterns are
largely consistent with those classical results. A more quantitative
analysis of the results show that the correlation patterns obtained
solely based on gene expressions match well with the known
functions of DG. In particular, the expression patterns of the
DG is highly correlated to those of the cerebral cortex and the
main olfactory bulb, which provide sensory inputs to DG. In
addition, DG is highly correlated to the hippocampal region and
the retrohippocampal region, propagating the filtered signals to its
downstream regions. We also observe that the intra-DG correlations
dominate, demonstrating again that most of the edges connect
spatially adjacent regions. Besides the correlations with known
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Fig. 4. Slices of the correlation patterns in the coronal (left), sagittal (middle) and horizontal (right) views when πthr =0.4 (top) and 0.5 (bottom). Each vertex
is labeled with the ARA informatics ID of the brain structure, and the corresponding structure name is given in Supplementary Table S2.
The region with the largest number of connections corresponds to the brain structure dentate gyrus.

functions, our modeling of the anatomical networks also identifies
many new relationships with DG that are not known from classical
anatomical studies.

Based on the obtained networks in 3D space, a variety of network
analysis and visualization techniques can be employed to analyze
the anatomical organization in the mouse CNS. In Bohland et al.
(2010), the K-means algorithm is used to cluster the brain voxels
into groups based on dimensionality reduced expression data, and
a metric known as the S index was employed to quantitatively
characterize the correspondence of the clustering results with the
classical anatomy reflected in the ARA annotations. Specifically,
let R={r1,...,rN } be a partition of the set of brain voxels in
which each ri comprises the set of indices of the voxels that map
to that cluster (or anatomical label). The spatial overlap between
a region from the ARA and the clustering result is defined as:
Pij =|ri ∩rj|/|rj|. From the Pij values that are computed over all
pairs of ARA regions and cluster result, we can then derive a global
scalar index of similarity between the two partitions. Since Pij �=Pji,
Xij is defined as Xij =max{Pij,Pji} along with Wij =Uij/

∑
Uij,

where Uij =min{|ri|,|rj|} if Xij >0 and 0 otherwise. Finally, the
S index is defined as S =1−4

∑
ij WijXij(1−Xij).

To compare our network modeling method with the K-means
clustering, we apply the leading eigenvector community detection
algorithm proposed by Newman (2006) and treat each detected
community as a cluster. Since different cutoff values πthr in the
stability selection yield different graphs, we vary πthr from 0.5 to
0.85 and detect communities from each of the resulting graphs. We
then run K-means with K equal to the number of communities so that
the results are comparable. Since the results of K-means depend on
the initialization, we run this algorithm 10 times and choose the one
with the best result. We compute the S index for each case and report

the results in Figure 5. We can observe that the community detection
results consistently give higher S index values, indicating that the
structures of our anatomical networks are in higher accordance
with the classical anatomy. We also plot the number of detected
communities as the cutoff changes in Figure 5. We can see that the
number of communities lies approximately between 100 and 250,
which is largely in correspondence with the number of structures in
classical anatomy. Detailed results on community identification are
provided in the Supplementary Material.

The classical anatomy was created mainly based on brain
functions. Since functions are mainly determined by gene
expression, the expression patterns within anatomical structures
should be more correlated than those across structures. To validate
this hypothesis, we show the distribution of the edges within and
across the anatomical structures when πthr =0.5 in Figure 6. We
also show the number of edges within and across structures when
the cutoff varies from 0.2 to 0.9. We can observe that the edges
within structures dominate in all cases, indicating that the expression
patterns within classical anatomy are highly correlated. We can
also observe from Figure 6 that the proportion of edges within
anatomical structures increases as the cutoff increases. This indicates
that most of the cross-structure edges have relatively small selection
probabilities, and they are removed as the cutoff increases. The
ranked lists of regions in terms of the number of connections are
provided in the Supplementary Material.

4.3 Results on genetic network modeling
Modeling of the gene interactions using the techniques described in
Section 3 yields a network consisting of 3012 vertices in which
vertices represent genes, and edges characterize the correlations
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Fig. 5. Comparison of the communities detected in the anatomical networks and the K-means clustering results. (A) Shows the S index comparison between
the anatomical structures in ARA and the results of community detection and K-means. (B) Shows the number of communities as the cutoff changes.
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between genes. Since genes involved in the same pathway usually
exhibit similar expression patterns, correlated expression patterns
may imply similar biological functions. We hence use Gene
Ontology (GO) (Ashburner et al., 2000) to evaluate the functional
relationships among tightly connected genes in the network. In
particular, we consider a gene and its direct neighbors as a group
(Gustafsson et al., 2005) and evaluate the functional enrichment
of each group using the hypergeometric distribution (Boyle et al.,
2004). We apply Bonferroni correction for multiple hypothesis
testing and consider GO terms with corrected P < 0.05 as statistically
significant (Boyle et al., 2004). We vary the cutoff πthr and observe
that most of the groups are annotated with at least one statistically
significant GO term. In particular, when πthr =0.5, there are 2702
groups annotated with at least one statistically significant GO term,
and the average number of terms per group is 15. This indicates that
most of the groups are associated with multiple enriched terms.

It has been previously observed that the degrees of many
biological networks follows a power-law distribution (Barabási

and Oltvai, 2004). This indicates that there exists a small number
of highly connected genes known as hubs. We vary the cutoff
and observe that the set of highly connected genes are largely
consistent (details provided in the Supplementary Material). We
report the top 10 genes with the largest number of connections
in Table 1 when πthr =0.8 and show slices of their expression
patterns in the Supplementary Material. We can observe that all
these groups are highly enriched with the biological function
binding or protein binding, implicating that they are likely to
encode transcription factors. Among these 10 genes, the APP
encodes an integral membrane protein expressed in many tissues and
concentrated in the synapses of neurons. Homologous proteins have
been identified in other organisms such as Drosophila, C.elegans
and all mammals. APP is best known for its association with
the Alzheimer’s disease, and mutations in critical regions of APP
cause familial susceptibility to Alzheimer’s disease. It would be
interesting to investigate how the ‘hubness’ of APP is related to
CNS disease.
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Table 1. Top 10 genes with the largest number of connections when
πthr =0.8

Gene No. of neighbors GO molecular function Corrected P-value

App 274 Binding 8.00e-31
Nsf 231 Binding 2.50e-21
Acsl5 219 Binding 6.00e-20
Nrgn 155 Protein binding 5.66e-24
Acadvl 95 Binding 1.68e-05
Syt1 94 Protein binding 4.36e-14
Chn2 82 Protein binding 1.15e-07
Btg1 69 Binding 5.74e-08
Eef1a1 59 Binding 1.79e-06
Apoe 54 Binding 6.76e-06

The molecular function and corrected P-values are also shown.

5 CONCLUSIONS
We model the anatomical and genetic organizations in the
mouse brain as networks. To enable robust and efficient network
construction, we employ tensor factorization techniques to reduce
the data volumes. The resulting networks recover known relations
and predict novel correlations not known from the literature. The
employed network modeling formulation is an approximate scheme.
It would be interesting to compare this approximate formulation
with the exact one on small datasets, where exact optimization can
be applied. The proposed methods can be applied to model other
biological systems, such as the Drosophila transcriptional networks.
We will explore the network modeling of other biological systems
in the future.
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