143 research outputs found

    The Logic of Quantum Mechanics Derived from Classical General Relativity

    Get PDF
    For the first time it is shown that the logic of quantum mechanics can be derived from Classical Physics. An orthomodular lattice of propositions, characteristic of quantum logic, is constructed for manifolds in Einstein's theory of general relativity. A particle is modelled by a topologically non-trivial 4-manifold with closed timelike curves - a 4-geon, rather than as an evolving 3-manifold. It is then possible for both the state preparation and measurement apparatus to constrain the results of experiments. It is shown that propositions about the results of measurements can satisfy a non-distributive logic rather than the Boolean logic of classical systems. Reasonable assumptions about the role of the measurement apparatus leads to an orthomodular lattice of propositions characteristic of quantum logic.Comment: 16 pages Late

    Linearity and Compound Physical Systems: The Case of Two Separated Spin 1/2 Entities

    Full text link
    We illustrate some problems that are related to the existence of an underlying linear structure at the level of the property lattice associated with a physical system, for the particular case of two explicitly separated spin 1/2 objects that are considered, and mathematically described, as one compound system. It is shown that the separated product of the property lattices corresponding with the two spin 1/2 objects does not have an underlying linear structure, although the property lattices associated with the subobjects in isolation manifestly do. This is related at a fundamental level to the fact that separated products do not behave well with respect to the covering law (and orthomodularity) of elementary lattice theory. In addition, we discuss the orthogonality relation associated with the separated product in general and consider the related problem of the behavior of the corresponding Sasaki projections as partial state space mappingsComment: 25 page

    Noncommmutative theorems: Gelfand Duality, Spectral, Invariant Subspace, and Pontryagin Duality

    Full text link
    We extend the Gelfand-Naimark duality of commutative C*-algebras, "A COMMUTATIVE C*-ALGEBRA -- A LOCALLY COMPACT HAUSDORFF SPACE" to "A C*-ALGEBRA--A QUOTIENT OF A LOCALLY COMPACT HAUSDORFF SPACE". Thus, a C*-algebra is isomorphic to the convolution algebra of continuous regular Borel measures on the topological equivalence relation given by the above mentioned quotient. In commutative case this reduces to Gelfand-Naimark theorem. Applications: 1) A simultaneous extension, to arbitrary Hilbert space operators, of Jordan Canonical Form and Spectral Theorem of normal operators 2) A functional calculus for arbitrary operators. 3) Affirmative solution of Invariant Subspace Problem. 4) Extension of Pontryagin duality to nonabelian groups, and inevitably to groups whose underlying topological space is noncommutative.Comment: 10 page
    corecore