3,026 research outputs found

    Non-normal Recurrent Neural Network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics

    Full text link
    A recent strategy to circumvent the exploding and vanishing gradient problem in RNNs, and to allow the stable propagation of signals over long time scales, is to constrain recurrent connectivity matrices to be orthogonal or unitary. This ensures eigenvalues with unit norm and thus stable dynamics and training. However this comes at the cost of reduced expressivity due to the limited variety of orthogonal transformations. We propose a novel connectivity structure based on the Schur decomposition and a splitting of the Schur form into normal and non-normal parts. This allows to parametrize matrices with unit-norm eigenspectra without orthogonality constraints on eigenbases. The resulting architecture ensures access to a larger space of spectrally constrained matrices, of which orthogonal matrices are a subset. This crucial difference retains the stability advantages and training speed of orthogonal RNNs while enhancing expressivity, especially on tasks that require computations over ongoing input sequences

    Learning Unitary Operators with Help From u(n)

    Full text link
    A major challenge in the training of recurrent neural networks is the so-called vanishing or exploding gradient problem. The use of a norm-preserving transition operator can address this issue, but parametrization is challenging. In this work we focus on unitary operators and describe a parametrization using the Lie algebra u(n)\mathfrak{u}(n) associated with the Lie group U(n)U(n) of n×nn \times n unitary matrices. The exponential map provides a correspondence between these spaces, and allows us to define a unitary matrix using n2n^2 real coefficients relative to a basis of the Lie algebra. The parametrization is closed under additive updates of these coefficients, and thus provides a simple space in which to do gradient descent. We demonstrate the effectiveness of this parametrization on the problem of learning arbitrary unitary operators, comparing to several baselines and outperforming a recently-proposed lower-dimensional parametrization. We additionally use our parametrization to generalize a recently-proposed unitary recurrent neural network to arbitrary unitary matrices, using it to solve standard long-memory tasks.Comment: 9 pages, 3 figures, 5 figures inc. subfigures, to appear at AAAI-1

    Using Regular Languages to Explore the Representational Capacity of Recurrent Neural Architectures

    Get PDF
    The presence of Long Distance Dependencies (LDDs) in sequential data poses significant challenges for computational models. Various recurrent neural architectures have been designed to mitigate this issue. In order to test these state-of-the-art architectures, there is growing need for rich benchmarking datasets. However, one of the drawbacks of existing datasets is the lack of experimental control with regards to the presence and/or degree of LDDs. This lack of control limits the analysis of model performance in relation to the specific challenge posed by LDDs. One way to address this is to use synthetic data having the properties of subregular languages. The degree of LDDs within the generated data can be controlled through the k parameter, length of the generated strings, and by choosing appropriate forbidden strings. In this paper, we explore the capacity of different RNN extensions to model LDDs, by evaluating these models on a sequence of SPk synthesized datasets, where each subsequent dataset exhibits a longer degree of LDD. Even though SPk are simple languages, the presence of LDDs does have significant impact on the performance of recurrent neural architectures, thus making them prime candidate in benchmarking tasks.Comment: International Conference of Artificial Neural Networks (ICANN) 201

    Improving speech recognition by revising gated recurrent units

    Full text link
    Speech recognition is largely taking advantage of deep learning, showing that substantial benefits can be obtained by modern Recurrent Neural Networks (RNNs). The most popular RNNs are Long Short-Term Memory (LSTMs), which typically reach state-of-the-art performance in many tasks thanks to their ability to learn long-term dependencies and robustness to vanishing gradients. Nevertheless, LSTMs have a rather complex design with three multiplicative gates, that might impair their efficient implementation. An attempt to simplify LSTMs has recently led to Gated Recurrent Units (GRUs), which are based on just two multiplicative gates. This paper builds on these efforts by further revising GRUs and proposing a simplified architecture potentially more suitable for speech recognition. The contribution of this work is two-fold. First, we suggest to remove the reset gate in the GRU design, resulting in a more efficient single-gate architecture. Second, we propose to replace tanh with ReLU activations in the state update equations. Results show that, in our implementation, the revised architecture reduces the per-epoch training time with more than 30% and consistently improves recognition performance across different tasks, input features, and noisy conditions when compared to a standard GRU
    • …
    corecore