2,478 research outputs found

    Some Relations on Paratopisms and An Intuitive Interpretation on the Adjugates of a Latin Square

    Full text link
    This paper will present some intuitive interpretation of the adjugate transformations of arbitrary Latin square. With this trick, we can generate the adjugates of arbitrary Latin square directly from the original one without generating the orthogonal array. The relations of isotopisms and adjugate transformations in composition will also be shown. It will solve the problem that when F1*I1=I2*F2 how can we obtain I2 and F2 from I1 and F1, where I1 and I2 are isotopisms while F1 and F2 are adjugate transformations and * is the composition. These methods could distinctly simplify the computation on a computer for the issues related to main classes of Latin squares.Comment: Any comments and criticise are appreciate

    On orthogonal generalized equitable rectangles

    Get PDF
    In this note, we give a complete solution of the existence of orthogonal generalized equitable rectangles, which was raised as an open problem in [4]. Key words: orthogonal latin squares, orthogonal equitable rectangles,

    Multi-latin squares

    Get PDF
    A multi-latin square of order nn and index kk is an n×nn\times n array of multisets, each of cardinality kk, such that each symbol from a fixed set of size nn occurs kk times in each row and kk times in each column. A multi-latin square of index kk is also referred to as a kk-latin square. A 11-latin square is equivalent to a latin square, so a multi-latin square can be thought of as a generalization of a latin square. In this note we show that any partially filled-in kk-latin square of order mm embeds in a kk-latin square of order nn, for each n2mn\geq 2m, thus generalizing Evans' Theorem. Exploiting this result, we show that there exist non-separable kk-latin squares of order nn for each nk+2n\geq k+2. We also show that for each n1n\geq 1, there exists some finite value g(n)g(n) such that for all kg(n)k\geq g(n), every kk-latin square of order nn is separable. We discuss the connection between kk-latin squares and related combinatorial objects such as orthogonal arrays, latin parallelepipeds, semi-latin squares and kk-latin trades. We also enumerate and classify kk-latin squares of small orders.Comment: Final version as sent to journa

    Generalized packing designs

    Full text link
    Generalized tt-designs, which form a common generalization of objects such as tt-designs, resolvable designs and orthogonal arrays, were defined by Cameron [P.J. Cameron, A generalisation of tt-designs, \emph{Discrete Math.}\ {\bf 309} (2009), 4835--4842]. In this paper, we define a related class of combinatorial designs which simultaneously generalize packing designs and packing arrays. We describe the sometimes surprising connections which these generalized designs have with various known classes of combinatorial designs, including Howell designs, partial Latin squares and several classes of triple systems, and also concepts such as resolvability and block colouring of ordinary designs and packings, and orthogonal resolutions and colourings. Moreover, we derive bounds on the size of a generalized packing design and construct optimal generalized packings in certain cases. In particular, we provide methods for constructing maximum generalized packings with t=2t=2 and block size k=3k=3 or 4.Comment: 38 pages, 2 figures, 5 tables, 2 appendices. Presented at 23rd British Combinatorial Conference, July 201

    Electric potential and field calculation of charged BEM triangles and rectangles by Gaussian cubature

    Get PDF
    It is a widely held view that analytical integration is more accurate than the numerical one. In some special cases, however, numerical integration can be more advantageous than analytical integration. In our paper we show this benefit for the case of electric potential and field computation of charged triangles and rectangles applied in the boundary element method (BEM). Analytical potential and field formulas are rather complicated (even in the simplest case of constant charge densities), they have usually large computation times, and at field points far from the elements they suffer from large rounding errors. On the other hand, Gaussian cubature, which is an efficient numerical integration method, yields simple and fast potential and field formulas that are very accurate far from the elements. The simplicity of the method is demonstrated by the physical picture: the triangles and rectangles with their continuous charge distributions are replaced by discrete point charges, whose simple potential and field formulas explain the higher accuracy and speed of this method. We implemented the Gaussian cubature method for the purpose of BEM computations both with CPU and GPU, and we compare its performance with two different analytical integration methods. The ten different Gaussian cubature formulas presented in our paper can be used for arbitrary high-precision and fast integrations over triangles and rectangles.Comment: 28 pages, 13 figure
    corecore