570 research outputs found

    Performance of Orthogonal Beamforming for SDMA with Limited Feedback

    Full text link
    On the multi-antenna broadcast channel, the spatial degrees of freedom support simultaneous transmission to multiple users. The optimal multiuser transmission, known as dirty paper coding, is not directly realizable. Moreover, close-to-optimal solutions such as Tomlinson-Harashima precoding are sensitive to CSI inaccuracy. This paper considers a more practical design called per user unitary and rate control (PU2RC), which has been proposed for emerging cellular standards. PU2RC supports multiuser simultaneous transmission, enables limited feedback, and is capable of exploiting multiuser diversity. Its key feature is an orthogonal beamforming (or precoding) constraint, where each user selects a beamformer (or precoder) from a codebook of multiple orthonormal bases. In this paper, the asymptotic throughput scaling laws for PU2RC with a large user pool are derived for different regimes of the signal-to-noise ratio (SNR). In the multiuser-interference-limited regime, the throughput of PU2RC is shown to scale logarithmically with the number of users. In the normal SNR and noise-limited regimes, the throughput is found to scale double logarithmically with the number of users and also linearly with the number of antennas at the base station. In addition, numerical results show that PU2RC achieves higher throughput and is more robust against CSI quantization errors than the popular alternative of zero-forcing beamforming if the number of users is sufficiently large.Comment: 27 pages; to appear in IEEE Transactions on Vehicular Technolog

    Space Division Multiple Access with a Sum Feedback Rate Constraint

    Full text link
    On a multi-antenna broadcast channel, simultaneous transmission to multiple users by joint beamforming and scheduling is capable of achieving high throughput, which grows double logarithmically with the number of users. The sum rate for channel state information (CSI) feedback, however, increases linearly with the number of users, reducing the effective uplink capacity. To address this problem, a novel space division multiple access (SDMA) design is proposed, where the sum feedback rate is upper-bounded by a constant. This design consists of algorithms for CSI quantization, threshold based CSI feedback, and joint beamforming and scheduling. The key feature of the proposed approach is the use of feedback thresholds to select feedback users with large channel gains and small CSI quantization errors such that the sum feedback rate constraint is satisfied. Despite this constraint, the proposed SDMA design is shown to achieve a sum capacity growth rate close to the optimal one. Moreover, the feedback overflow probability for this design is found to decrease exponentially with the difference between the allowable and the average sum feedback rates. Numerical results show that the proposed SDMA design is capable of attaining higher sum capacities than existing ones, even though the sum feedback rate is bounded.Comment: 29 pages; submitted to IEEE Transactions on Signal Processin

    Opportunistic Scheduling and Beamforming for MIMO-SDMA Downlink Systems with Linear Combining

    Full text link
    Opportunistic scheduling and beamforming schemes are proposed for multiuser MIMO-SDMA downlink systems with linear combining in this work. Signals received from all antennas of each mobile terminal (MT) are linearly combined to improve the {\em effective} signal-to-noise-interference ratios (SINRs). By exploiting limited feedback on the effective SINRs, the base station (BS) schedules simultaneous data transmission on multiple beams to the MTs with the largest effective SINRs. Utilizing the extreme value theory, we derive the asymptotic system throughputs and scaling laws for the proposed scheduling and beamforming schemes with different linear combining techniques. Computer simulations confirm that the proposed schemes can substantially improve the system throughput.Comment: To appear in the Proceedings of the 18th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Athens, Greece, September 3 - 7, 200

    Multiple Access in Aerial Networks: From Orthogonal and Non-Orthogonal to Rate-Splitting

    Get PDF
    Recently, interest on the utilization of unmanned aerial vehicles (UAVs) has aroused. Specifically, UAVs can be used in cellular networks as aerial users for delivery, surveillance, rescue search, or as an aerial base station (aBS) for communication with ground users in remote uncovered areas or in dense environments requiring prompt high capacity. Aiming to satisfy the high requirements of wireless aerial networks, several multiple access techniques have been investigated. In particular, space-division multiple access(SDMA) and power-domain non-orthogonal multiple access (NOMA) present promising multiplexing gains for aerial downlink and uplink. Nevertheless, these gains are limited as they depend on the conditions of the environment. Hence, a generalized scheme has been recently proposed, called rate-splitting multiple access (RSMA), which is capable of achieving better spectral efficiency gains compared to SDMA and NOMA. In this paper, we present a comprehensive survey of key multiple access technologies adopted for aerial networks, where aBSs are deployed to serve ground users. Since there have been only sporadic results reported on the use of RSMA in aerial systems, we aim to extend the discussion on this topic by modelling and analyzing the weighted sum-rate performance of a two-user downlink network served by an RSMA-based aBS. Finally, related open issues and future research directions are exposed.Comment: 16 pages, 6 figures, submitted to IEEE Journa

    Fundamental Limits in Correlated Fading MIMO Broadcast Channels: Benefits of Transmit Correlation Diversity

    Full text link
    We investigate asymptotic capacity limits of the Gaussian MIMO broadcast channel (BC) with spatially correlated fading to understand when and how much transmit correlation helps the capacity. By imposing a structure on channel covariances (equivalently, transmit correlations at the transmitter side) of users, also referred to as \emph{transmit correlation diversity}, the impact of transmit correlation on the power gain of MIMO BCs is characterized in several regimes of system parameters, with a particular interest in the large-scale array (or massive MIMO) regime. Taking the cost for downlink training into account, we provide asymptotic capacity bounds of multiuser MIMO downlink systems to see how transmit correlation diversity affects the system multiplexing gain. We make use of the notion of joint spatial division and multiplexing (JSDM) to derive the capacity bounds. It is advocated in this paper that transmit correlation diversity may be of use to significantly increase multiplexing gain as well as power gain in multiuser MIMO systems. In particular, the new type of diversity in wireless communications is shown to improve the system multiplexing gain up to by a factor of the number of degrees of such diversity. Finally, performance limits of conventional large-scale MIMO systems not exploiting transmit correlation are also characterized.Comment: 29 pages, 8 figure
    • …
    corecore