5,429,405 research outputs found

    The relative contributions of facial shape and surface information to perceptions of attractiveness and dominance

    Get PDF
    Although many studies have investigated the facial characteristics that influence perceptions of others’ attractiveness and dominance, the majority of these studies have focused on either the effects of shape information or surface information alone. Consequently, the relative contributions of facial shape and surface characteristics to attractiveness and dominance perceptions are unclear. To address this issue, we investigated the relationships between ratings of original versions of faces and ratings of versions in which either surface information had been standardized (i.e., shape-only versions) or shape information had been standardized (i.e., surface-only versions). For attractiveness and dominance judgments of both male and female faces, ratings of shape-only and surface-only versions independently predicted ratings of the original versions of faces. The correlations between ratings of original and shape-only versions and between ratings of original and surface-only versions differed only in two instances. For male attractiveness, ratings of original versions were more strongly related to ratings of surface-only than shape-only versions, suggesting that surface information is particularly important for men’s facial attractiveness. The opposite was true for female physical dominance, suggesting that shape information is particularly important for women’s facial physical dominance. In summary, our results indicate that both facial shape and surface information contribute to judgments of others’ attractiveness and dominance, suggesting that it may be important to consider both sources of information in research on these topics

    Recycling of quantum information: Multiple observations of quantum clocks

    Get PDF
    How much information about the original state preparation can be extracted from a quantum system which already has been measured? That is, how many independent (non-communicating) observers can measure the quantum system sequentially and give a nontrivial estimation of the original unknown state? We investigate these questions and we show from a simple example that quantum information is not entirely lost as a result of the measurement-induced collapse of the quantum state, and that an infinite number of independent observers who have no prior knowledge about the initial state can gain a partial information about the original preparation of the quantum system.Comment: 4 page

    Computability of entropy and information in classical Hamiltonian systems

    Full text link
    We consider the computability of entropy and information in classical Hamiltonian systems. We define the information part and total information capacity part of entropy in classical Hamiltonian systems using relative information under a computable discrete partition. Using a recursively enumerable nonrecursive set it is shown that even though the initial probability distribution, entropy, Hamiltonian and its partial derivatives are computable under a computable partition, the time evolution of its information capacity under the original partition can grow faster than any recursive function. This implies that even though the probability measure and information are conserved in classical Hamiltonian time evolution we might not actually compute the information with respect to the original computable partition
    • …
    corecore