3 research outputs found

    Numerical Geometry of Map and Model Assessment

    Get PDF
    We are describing best practices and assessment strategies for the atomic interpretation of cryo-electron microscopy (cryo-EM) maps. Multiscale numerical geometry strategies in the Situs package and in secondary structure detection software are currently evolving due to the recent increases in cryo-EM resolution. Criteria that aim to predict the accuracy of fitted atomic models at low (worse than 8 angstrom) and medium (4-8 angstrom) resolutions remain challenging. However, a high level of confidence in atomic models can be achieved by combining such criteria. The observed errors are due to map-model discrepancies and due to the effect of imperfect global docking strategies. Extending the earlier motion capture approach developed for flexible fitting, we use simulated fiducials (pseudoatoms) at varying levels of coarse-graining to track the local drift of structural features. We compare three tracking approaches: naive vector quantization, a smoothly deformable model, and a tessellation of the structure into rigid Voronoi cells, which are fitted using a multi-fragment refinement approach. The lowest error is an upper bound for the (small) discrepancy between the crystal structure and the EM map due to different conditions in their structure determination. When internal features such as secondary structures are visible in medium-resolution EM maps, it is possible to extend the idea of point-based fiducials to more complex geometric representations such as helical axes, strands, and skeletons. We propose quantitative strategies to assess map-model pairs when such secondary structure patterns are prominent

    An Effective Computational Method Incorporating Multiple Secondary Structure Predictions in Topology Determination for Cryo-EM Images

    Get PDF
    A key idea in de novo modeling of a medium-resolution density image obtained from cryo-electron microscopy is to compute the optimal mapping between the secondary structure traces observed in the density image and those predicted on the protein sequence. When secondary structures are not determined precisely, either from the image or from the amino acid sequence of the protein, the computational problem becomes more complex. We present an efficient method that addresses the secondary structure placement problem in presence of multiple secondary structure predictions and computes the optimal mapping. We tested the method using 12 simulated images from alpha-proteins and two Cryo-EM images of α-β proteins. We observed that the rank of the true topologies is consistently improved by using multiple secondary structure predictions instead of a single prediction. The results show that the algorithm is robust and works well even when errors/ misses in the predicted secondary structures are present in the image or the sequence. The results also show that the algorithm is efficient and is able to handle proteins with as many as 33 helices

    Orientations of beta-strand traces and near maximum twist

    No full text
    corecore