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An Effective Computational Method Incorporating Multiple 
Secondary Structure Predictions in Topology Determination for 
Cryo-EM Images

Abhishek Biswas1, Desh Ranjan1, Mohammad Zubair1, Stephanie Zeil1, Kamal Al Nasr2, 
and Jing He1,*

1Dept. of Computer Science, Old Dominion University, Norfolk, VA 23529

2Dept. of Computer Science, Tennessee State University, Nashville, TN 37209

Abstract

A key idea in de novo modeling of a medium-resolution density image obtained from cryo-

electron microscopy is to compute the optimal mapping between the secondary structure traces 

observed in the density image and those predicted on the protein sequence. When secondary 

structures are not determined precisely, either from the image or from the amino acid sequence of 

the protein, the computational problem becomes more complex. We present an efficient method 

that addresses the secondary structure placement problem in presence of multiple secondary 

structure predictions and computes the optimal mapping. We tested the method using 12 simulated 

images from α-proteins and two Cryo-EM images of α-β proteins. We observed that the rank of 

the true topologies is consistently improved by using multiple secondary structure predictions 

instead of a single prediction. The results show that the algorithm is robust and works well even 

when errors/misses in the predicted secondary structures are present in the image or the sequence. 

The results also show that the algorithm is efficient and is able to handle proteins with as many as 

33 helices.
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1 Introduction

THE field of cryo-electron microscopy (Cryo-EM) has undergone dramatic growth over the 

last several decades. Cryo-EM has become a major technique in the structure determination 

of large molecular complexes [4, 5]. Unlike X-ray crystallography and Nucleic Magnetic 

Resonance (NMR), Cryo-EM is particularly suitable for large molecular complexes, such as 

viruses, ribosomes, and membrane-bound ion channels [6–8]. For density maps (3D images) 

with high resolution (2–4 Å), the atomic structure can be derived directly, since the 
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backbone is mostly resolved. However, it is computationally challenging to derive atomic 

structures when the backbone of the protein is not resolved from the density maps, such as 

those with resolutions lower than 5 Å. In current approaches, a known atomic structure or a 

model built from known atomic structures is fit into the Cryo-EM density map [10–14]. 

However, those approaches are limited by the need for atomic structures that are either 

components of or homologous to the atypically-sized protein. When there is no template 

structure with sufficient similarity, de novo methods must be devised and used. These 

methods do not rely on templates and they aim to derive the structure from the intrinsic 

relationship among the secondary structures visible in the density map.

Although it is not possible to distinguish amino acids, most secondary structures, such as α-

helices (red sticks in Fig. 1A) and (β-sheets, can be computationally identified from a 

density map with medium resolutions, such as 4–8Å [18–23]. Once a β-sheet density region 

is identified, β-strands may be predicted using StrandTwister by analyzing the twist of a β-

sheet [25, 27]. A helix detected from a Cryo-EM image can be represented as a line–referred 

to here as an α-trace-that corresponds to the central axis of a helix (shown as red sticks in 

Fig. 1A). Similarly, a β-strand can be represented as a β-trace that corresponds to the central 

line of the β-strand (see Section 3.5 for more details). The term, secondary structure traces 

(SSTs), refers to the set of α-traces and β-traces detected from the 3-dimensional (3D) 

image (Fig. 1A).

In order to help determine the threading of the protein sequence through the SSTs, a 

computational method, such as JPred [9], is used to predict the subsequences (sequence 

segments) of the protein sequence that are likely to be the secondary structures. These 

subsequences are then mapped the SSTs. The topology of the SSTs refers to their order with 

respect to the protein sequence and the direction of each SST. For example, in Fig. 1, D1 

through D18 represent SSTs and S1 through S18 represent the subsequences on the protein 

chain that correspond to the secondary structures. In this case, SSETracer was able to detect 

18 of 20 helices (red sticks in Fig. 1A) from the 3D image. Each SST corresponds to a 

sequence segment in the true topology. For example, S1 is mapped to D10 and S2 is mapped 

to D15. The order of SSTs in the true topology is 

(D10,D15,D13,D8,D12,D11,D14,D16,D17,D18,D9,D7,D5,D6,D2,D3,D1,D4). In other words, 

they are mapped to (S1,S2,S3,S4,S5,S6,S7,S8,S9,S10,S11,S12,S13,S14,S15,S16,S17,S18). Note 

that there are two possible directions when mapping a sequence segment to an SST (the 

arrows shown in Fig. 1A and the dots/crosses shown in Fig. 1B), since the sequence of a 

protein has a direction.

Previously, we have shown that finding the optimal mapping between SSTs and the 

sequence segments is an NP-hard problem [28]. A naïve approach used to find the optimal 

solution requires Ω(N!2N) time, where N is the number of SSTs. A dynamic programming 

algorithm has been previously devised to find the optimal match in O(N22N) computation 

time, reduced from O(N!2N) as in a naïve approach. In a general case where M sequence 

segments are mapped to N SSTs (assuming M ≥ N, Δ = M − N), we previously developed a 

constrained dynamic programming algorithm and a K shortest path algorithm, DP-TOSS, to 

find top K best mappings in O(Δ2N22N) time [24].
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Deriving the optimal secondary structure topology is more than a mapping problem. The 

accuracy of secondary structure prediction is about 80%, [17, 29–31], which is similar to the 

accuracy of the detection of SSTs from medium-resolution images [19, 23]. No single 

prediction method is superior to any other prediction method for all secondary structures. In 

topology determination, alternative positions for an individual secondary structure must 

often be considered (Fig 2.). However, that results in a significant computational cost. Let N 
be the number of secondary structures in a protein. Suppose there are a maximum of p 
alternative positions for each helix segment on the sequence and q alternative positions for 

each of the SSTs, then there are pNqN possible pairs of secondary structure sets to be 

matched. The total number of possible matches will be pNqNN!2N, since there are N!2N 

different ways (or different topologies) to map a set of SSTs to a set of sequence segments.

Previous algorithms, such as DP-TOSS [24] and Gorgon [32], predominantly address the 

mapping problem. A placement problem arises when alternative positions of the secondary 

structures need to be considered. One either has to submit the best estimated secondary 

structure positions to DP-TOSS or Gorgon or run either of these two programs multiple 

times using alternative positions that are produced from multiple secondary structure 

prediction servers. We previously attempted a dynamic graph approach in which the 

alternative positions are handled in the graph update process [33]. That approach yielded, on 

average, a running time that was about 34% lower than the naïve approach. To reduce the 

computational cost even more, we designed an effective two-step approach, the outline of 

which was presented at a conference [34]. In this paper, we demonstrate the effectiveness of 

this approach with new data and enhanced results. The two-step approach utilizes two 

dynamic programming algorithms, one in DP-TOSS to derive the top K topologies using a 

consensus secondary structure prediction, and another to derive optimal placement for each 

of the top K topologies. We have compared the two-step approach with the brute-force 

approach and have shown that, in principle, the approach is applicable to alternative 

positions of SSTs in the 3D image [35]. We also demonstrate the effectiveness of the two-

step approach in handling alternative sequence segments predicted from multiple secondary 

structure prediction servers. Moreover, the results show that the ranking of the true topology 

improved when using multiple secondary structure predictions in comparison to any of the 

single prediction methods that were tested.

2 Methods

2.1 The Secondary Structure Mapping Problem

For a general protein, suppose there are Nα helices and Nβ β-strands detected from a 3D 

image, and N = Nα+Nβ. Also assume that there are Mα helices and Mβ β-strands predicted 

from the amino acid sequence of the protein, and M = Mα+Mβ. To simplify the description, 

we assume Mα = Nα and Mβ = Nβ; consequently, M = N. Our actual algorithm and 

implementation handle the case where M ≠ N. Let the sequence segments of the secondary 

structures be {S1, S2, …, SN}, where Si denotes the ith sequence segment from the N-

terminal of the protein. Note that the direction of the protein sequence is from the N-

terminal to the C-terminal. Let the SSTs of the 3D image be {D1,D2,…,DN}. For 

convenience, let  be α-traces and  be β-traces. 
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The secondary structure mapping problem is to find a mapping σ such that Si is mapped to 

Dσ(i), i = 1,2,…, N and the following two criteria are satisfied: (1) both Si and Dσ(i) 

correspond to either a helix or a β-strand and (2) the mapping score is optimal. An optimal 

SST topology corresponds to a mapping with the optimal score that often evaluates the 

overall differences between the two sets of secondary structures. The differences can be 

measured using various factors, such as the length of the secondary structures, the distance 

between two consecutive secondary structures, and the likelihood that the amino acids are on 

a loop [24] [36–38]. The scoring function used in this paper consists of a skeleton length 

between two secondary structure traces, the length of a secondary structure, and the loop 

length on the protein sequence.

Given a specific set of secondary structure traces and a specific set of predicted secondary 

structure sequence segments, K best mappings were determined using DP-TOSS. In the first 

step, a set of sequence segments predicted by a consensus secondary structure prediction 

server was used. The idea is to use the best estimation of the secondary structure positions in 

the first step in order to obtain a small number of possible topologies. For each possible 

topology, the best placement of the secondary structures will be determined in the second 

step.

2.2 Dynamic Programming for Finding Optimal Placement

Let us represent the alternative sequence segments for the secondary structure as the 

following. Let  be the lth alternative for sequence segment Si,where l = 1,2,…,p,i = 

1,2,…,N. In other words, there are a maximum of p alternatives for each of the segments. 

For a given topology, mapping σ is known. The optimal placement problem is to find the 

placement of  for each sequence segment Si,i = 1,2, …, N, such 

that the score of mapping  to (Dσ(1), Dσ(2), …, Dσ(N)) is 

minimized.

A naïve approach to finding the best placement of a topology is to exhaustively score the pN 

different placements. Below, we show a dynamic programming algorithm in which we store 

and reuse information. Let g(i, k) denote the best cost that can be obtained when (S1,S2,

…,Si) is mapped to (Dσ(1), Dσ(2), …, Dσ(i)) with the kth placement  used for Si. Then, for 

any position  of Si+1, g(i + 1, k′) is only affected by the values g(i, k), where k = 1,2,

…,p, and the score for positioning the ith mapped segment and the (i + 1)th mapped segment. 

More precisely, for k′ ∈ {1,2, …,p},
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Note that l(Dσ(i+1)) measures the length of SST (Dσ(i+1)) and δ(Dσ(i),Dσ(i+1)) measures the 

length along the skeleton between Dσ(i) and Dσ(i+1). Ideally, δ(Dσ(i), Dσ(i+1)) corresponds to 

the length of the loop connecting the two secondary structures Dσ(i) and Dσ(i+1) and d(a,b) 
measures the loop length between two consecutive secondary structures, a and b, on the 

sequence.

2.3 Secondary Structure Predictions from Multiple Servers

Secondary structure prediction was performed using five online servers (SYMPRED [3], 

JPred [9], PSIPRED [17], PREDATOR [26], and Sable [39]). SYMPRED and JPred are 

consensus servers. The initial positions include the predicted positions using either 

SYMPRED or JPred, whichever predicted a greater number of helices. These initial 

positions were used to obtain the initial topologies using DP-TOSS. Alternative positions of 

each secondary structure were generated based on the results from the multiple secondary 

structure predictions.

3 Results

The accuracy and efficiency of the two-step approach were tested using 12 α-proteins and 

two Cryo-EM proteins that contain both α-helices and β-sheets. While α-proteins do not 

contain β-sheets, they provide test cases for large proteins. The length of the α-proteins 

ranged from 142 amino acids (1FLP) to 585 amino acids (2XVV). Therefore, the α-protein 

dataset is suitable for testing the efficiency of the method and its capability of handling large 

complicated cases in topology determination. For the α-protein dataset, the atomic structures 

were downloaded from the Protein Data Bank (PDB), and they were used to simulate 

density maps at 10Å resolution using EMAN software. The two Cryo-EM test cases use 

experimentally derived Cryo-EM density maps (EMD-5030-4V68_BR and 

EMD-1780-3IZ6_K) downloaded from the Electron Microscopy Data Bank (EMDB) [40]. 

The atomic structures of chain BR of 4V68 (PDB ID) and chain K of 3IZ6 (PDB ID) were 

used to extract the density regions that correspond to the chains.

3.1 The Accuracy of the Helix Detection from the Density Images

The helices and β-sheets were detected from the density maps using SSETracer [2], and the 

β-strands were detected using StrandTwister [27]. Since the accuracy of topology 

determination is affected by the accuracy of the detected secondary structures, we discuss 

the detection accuracy in detail. The accuracy was evaluated at two different levels: the 

number of detected helices and the number of detected Cα atoms on the helices [23]. We 

observed that short helices tend to be missed in the detection, particularly those that are 

shorter than three turns. SSETracer detected all of the helices for three of the 12 cases (Rows 

1, 2, and 4 in Table 1). Short helices were missed in the detection for the other nine cases. 

However, our previous experience and the results in this paper have shown that short helices 

play a minor role in the detection of the correct topology. A helix may be detected longer or 

shorter than it is; thus, fine measurement is needed to evaluate the accuracy. For example, 

although SSETracer detected all seven helices in 1FLP (Row 1, Table 1), some of the helices 

were detected slightly shorter, since the sensitivity is 93.94%. Some of the helices might be 

detected longer than or shifted from the actual helix, since the specificity is 72.09% (Row 1, 
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Table 1). It is often more accurate to measure the number of detected Cα atoms on the 

helices. A Cα atom on a helix is considered to be a detected atom if it is within 2.5Å from an 

identified helix voxel. For the simulated dataset shown in Table 1, SSETracer was able to 

detect most of the helices with an average specificity of 82.24% and an average sensitivity of 

84.83%. This suggests that the ability of SSETracer to detect the helices in this dataset was 

fairly accurate. We noticed that secondary structure prediction servers, such as SYM-PRED 

and JPred, predicted a greater number of helices than SSETracer (Columns 4 and 5, Table 

1). DP-TOSS was designed to incorporate non-identical numbers of the secondary structures 

predicted from the sequence and from the 3D image.

3.2 Topology Ranking in the Two-Step Approach

The input into the two-step approach includes three components: the α-traces detected using 

SSETracer (blue sticks in Fig. 3B), the skeleton derived using SkelEM [15](yellow density 

in Fig. 3B), and five secondary structure predictions obtained from different online servers 

(Fig. 2). In the first step, the top 1000 ranked topologies were derived using the consensus 

prediction obtained from either SYMPRED or JPred. For each of the possible topologies, 

optimal placement was searched using the newly devised dynamic programming algorithm 

and secondary structure predictions from the five online servers. We use the largest test case, 

2XVV, as an example to illustrate the data and process used in the two-step approach. In this 

case, about 74% of the helices were detected from the 3D image, and 14 short helices were 

missed. Two helices are immediate neighbors on the sequence and they were detected as one 

long helix. One question arises: Is it still possible to distinguish the true topology if only 

about 74% of the helices are detected? Using the two-step approach, the correct topology for 

the 19 detected SSTs was ranked 8th, near the top of the list, considering that there are 

 possible ways to match, where p = 5,M = 28,N = 19 for 2XVV. We 

observed that, to some extent, the skeleton may compensate for the mistake in the secondary 

structure detection. For example, even though some of the short helices were not detected, 

the skeleton still passes through the region of the missed helix. Since the missed helices are 

generally short, the effect of a missed helix is reduced due to the existence of the skeleton. In 

fact, if the true sequence segments are used in topology determination, in this present case, 

the true topology was ranked 4th (Column 3, Table 2). Note that although the skeleton in this 

case is fairly clear, ambiguity is often observed in the skeleton. An ambiguity point is where 

multiple skeleton braches meet at the same point, leading to multiple ways to connect the 

secondary structures. This ambiguity is resolved in the dynamic programming graph and the 

search for the constrained shortest path [24].

3.3 Using Multiple Secondary Structure Predictions Versus Using Single Prediction

Many secondary structure prediction methods are available and some of them provide online 

services. Although certain methods are more accurate than others, overall, we observed that 

no single method is superior to any other for all the secondary structures. For example, 

certain helices are predicted more accurately by SYMPRED, but others are predicted more 

accurately by different methods (Fig. 2). To utilize the advantage of all the prediction 

methods, it is always important to use all of the predictions. However, doing so results in 
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significant computational overhead. We present a two-step approach in which alternative 

positions are generated from all predictions in the second step. A dynamic programming 

placement method is devised to quickly find the best alternatives that fit the constraints from 

all of the SSTs. We tested the two-step approach on 12 large proteins. The rank of the true 

topology was used to evaluate the accuracy for each of the seven methods. The difference 

among the seven methods resides in the input of the secondary structure positions on the 

sequence obtained by (1) PDB, (2) SYMPRED, (3) JPred, (4) PSIPRED, (5) PREDATOR, 

(6) Sable, and (7) all five of the online predictions. Intuitively, the best accuracy comes from 

the use of the true secondary structure positions on the sequence. Amazingly, this is true for 

only four of the 12 cases (Columns 3, 9, Table 2). Since the SSTs detected from the image 

are not 100% accurate, using the true sequence position for the helices in the matching is not 

always the best approach. For example, the correct topology was ranked 4th for 3LTJ when 

all five predictions were used, but it was ranked 9th when the true sequence segments of the 

helices were used (Row 4, Table 2). Since small helices are generally harder to detect from 

both the image and the sequence, missing them from both sources appears to be more 

favorable than having them in only one of the two sets.

Our results clearly indicate that the two-step approach that utilizes all five secondary 

structure predictions is the most accurate approach from among the seven different methods. 

The true topology rank is the highest among the other five methods (use of SYMPRED, 

JPred, PSIPRED, PREDATOR, and Sable) when all of them were used for all 12 proteins in 

the test (Column 9, Table 2). For example, true topology was ranked 15th for 2XB5 when all 

five of the online secondary structure prediction methods were used to generate alternatives. 

The true topology of 2XB5 was ranked 40th, 44th, 40th, 75th, and 53rd, respectively, when 

SYMPRED, JPred, PSIPRED, PREDATOR, and Sable were used individually. We observed 

substantial enhancement in ranking of the true topology when multiple secondary structure 

predictions were used for 10 of the 12 cases. We noticed that these 10 cases are the largest 

10 of the 12 cases, with their lengths ranging from 201 to 585.

3.4 The Run-Time of the Two-Step Approach

The major time in the two-step approach occurs at the mapping step in which the initial 

1000 top-ranked topologies are generated. The second step is a placement step, and it can be 

quickly done using the dynamic programming algorithm given in this paper. The time it 

takes to compute the initial top-ranked topologies and the placement of those topologies are 

shown in Table 2, Column 10. Apparently the time is quite little. For example, to produce 

the top 1000 topologies and to derive the optimal placement for those topologies only takes 

14.89 seconds for 3ODS, in which 16 of the 23 helices were detected from the image. The 

experiments in this paper were executed on a 2x Intel Xenon E5-2660 v2, 2.2GHz server 

machine. The factors affecting the run-time include the number of secondary structures and 

the quality of the skeleton. We noticed that the skeletons produced from the simulated 

density images are often much better than those produced from experimentally-derived 

images.
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3.5 Two Cryo-EM Cases Involving α-β Proteins

It is generally more challenging to determine the topology for proteins with β-sheets than α-

proteins. First, the detection of β-sheets is generally more challenging than the detection of 

helices. Second, the close spacing of β-strands makes it more challenging to identify the 

correct topology. We applied the two-step approach to two experimentally-derived Cryo-EM 

density maps, (EMDB_5030 and EMDB_1780) that were downloaded from the Electron 

Microscopy Data Bank (EMDB). Each density map corresponds to an atomic structure; thus, 

they can be used to test the accuracy of our approach. In the case of EMDB_5030, all three 

helices and three β-strands were detected using SSETracer and StrandTwister (Fig. 4). The 

true topology was ranked 47th when multiple secondary structure predictions and dynamic 

programming placement were used. Amazingly, the rank (47th) is even better than the rank 

(55th) derived using true secondary structure positions on the protein sequence. In the case 

of EMDB_1780, the rank of the true topology is the 2nd when either multiple secondary 

structure prediction methods or the true sequence segments of secondary structures are used. 

Although the two Cryo-EM proteins are smaller than most of the other proteins in the test, 

they are the first two cases that successfully demonstrated topology determination directly 

using computationally-obtained β-traces and multiple secondary structure predictions.

4 Conclusions

Due to inaccuracy in the estimation of secondary structures, the determination of topology 

for SSTs requires the exploration of alternatives. Effective methods are needed to explore the 

large solution space that results from those alternatives. We propose a dynamic 

programming algorithm to find the optimal placement when a topology is given. This 

algorithm is combined with our previous mapping algorithm and the shortest K paths 

algorithm to form a two-step approach. A test using 12 proteins showed that the two-step 

approach improves the ranking of the true topology in comparison to using single consensus 

prediction. We demonstrate for the first time that computationally-detected helices and β-

strands from an experimentally-derived Cryo-EM density image can be combined with 

multiple secondary structure predictions to rank the true topology near the top of the list. 

Our previous methods were mostly tested using the true positions of secondary structures. In 

this present study, we have taken a significant step by establishing an efficient algorithm to 

address the increased computational cost due to the alternatives.
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Fig. 1. 
Secondary structures and topology. (A) The density map (gray) was simulated to 10 Å 

resolution using the atomic structure of protein 3HJL (Protein Data Bank (PDB) ID) and 

EMAN software [1]. The secondary structure traces of helices (red sticks) were detected 

using SSETracer [2] and viewed using Chimera [16]. Arrows: the direction of the protein 

sequence; (B) The true topology of SSTs (arrows, crosses, and dots indicate the direction of 

the protein sequence); (C) An illustration of the amino acid sequence of protein 3HJL 

annotated with the location of α-helices (red rectangles) based on the structure. Loops 

longer than four amino acids are indicated using “…”.
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Fig. 2. 
Secondary structure predictions from multiple servers. The amino acid sequence of protein 

2XVV (PDB ID) is labeled at the outermost circle. The positions of helices are shown as red 

rectangles from outer to inner circles as the true position of the secondary structures 

obtained from PDB, using SYMPRED [3], JPred [9], PSIPRED [17], and PREDATOR [26] 

prediction methods, respectively. The α-traces (blue lines) detected from the density map of 

2XVV using SSETracer are shown in the center.

Biswas et al. Page 14

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2017 June 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
The true topology derived from the two-step approach for 2XVV (PDB ID). (A) The 3D 

image (gray) and the SSTs (blue sticks) detected using SSETracer [2]; (B) Skeletons (yellow 

density) derived from the Cryo-EM density map using SkelEM [15] and the SSTs; (C) The 

atomic structure (pink ribbon) superimposed on the SST elements and the skeleton. 

Examples of missed helices in the detection are shown (arrows); (D) The true topology 

computed by the two-step approach (shown in multiple colors from the blue/N-terminal to 

the red/C-terminal) is ranked 8th. The connecting traces were identified from the skeleton 

using DP-TOSS [24]
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Fig. 4. 
Topologies derived from the Cryo-EM density maps. Secondary structure positions derived 

from the true structure and those predicted using SYMPRED [3], JPred [9], and PSIPRED 

[17] are shown from the outer circles to the inner circles for protein 4V68_BR(PDB ID) in 

(A) and 3IZ6_K(PDB ID) in (B). The α-traces (thicker sticks) and the β-traces (thinner 

sticks) were detected from the experimentally-derived Cryo-EM map EMDB_5030 in (A) 

and EMDB_1780 in (B) using SSETracer [2] and StrandTwister [27]. The true topology 

(shown in rainbow colors from blue/N-terminal to red/C-terminal) is ranked 47th for 

EMDB_5030 and 2nd for EMDB_1780. The connecting trace was identified from the 

skeleton using DP-TOSS. The true structure (ribbon) is superimposed for each.
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