22 research outputs found

    Incremental Sparse Bayesian Ordinal Regression

    Get PDF
    Ordinal Regression (OR) aims to model the ordering information between different data categories, which is a crucial topic in multi-label learning. An important class of approaches to OR models the problem as a linear combination of basis functions that map features to a high dimensional non-linear space. However, most of the basis function-based algorithms are time consuming. We propose an incremental sparse Bayesian approach to OR tasks and introduce an algorithm to sequentially learn the relevant basis functions in the ordinal scenario. Our method, called Incremental Sparse Bayesian Ordinal Regression (ISBOR), automatically optimizes the hyper-parameters via the type-II maximum likelihood method. By exploiting fast marginal likelihood optimization, ISBOR can avoid big matrix inverses, which is the main bottleneck in applying basis function-based algorithms to OR tasks on large-scale datasets. We show that ISBOR can make accurate predictions with parsimonious basis functions while offering automatic estimates of the prediction uncertainty. Extensive experiments on synthetic and real word datasets demonstrate the efficiency and effectiveness of ISBOR compared to other basis function-based OR approaches

    3rd Workshop in Symbolic Data Analysis: book of abstracts

    Get PDF
    This workshop is the third regular meeting of researchers interested in Symbolic Data Analysis. The main aim of the event is to favor the meeting of people and the exchange of ideas from different fields - Mathematics, Statistics, Computer Science, Engineering, Economics, among others - that contribute to Symbolic Data Analysis

    Neural network for ordinal classification of imbalanced data by minimizing a Bayesian cost

    Get PDF
    Ordinal classification of imbalanced data is a challenging problem that appears in many real world applications. The challenge is to simultaneously consider the order of the classes and the class imbalance, which can notably improve the performance metrics. The Bayesian formulation allows to deal with these two characteristics jointly: It takes into account the prior probability of each class and the decision costs, which can be used to include the imbalance and the ordinal information, respectively. We propose to use the Bayesian formulation to train neural networks, which have shown excellent results in many classification tasks. A loss function is proposed to train networks with a single neuron in the output layer and a threshold based decision rule. The loss is an estimate of the Bayesian classification cost, based on the Parzen windows estimator, which is fitted for a thresholded decision. Experiments with several real datasets show that the proposed method provides competitive results in different scenarios, due to its high flexibility to specify the relative importance of the errors in the classification of patterns of different classes, considering the order and independently of the probability of each class.This work was partially supported by Spanish Ministry of Science and Innovation through Thematic Network "MAPAS"(TIN2017-90567-REDT) and by BBVA Foundation through "2-BARBAS" research grant. Funding for APC: Universidad Carlos III de Madrid (Read & Publish Agreement CRUE-CSIC 2023)

    Predicting diabetic neuropathy risk level using artificial neural network and clinical parameters of subjects with diabetes.

    Get PDF
    Background: A risk assessment tool has been developed for automated estimation of level of neuropathy based on the clinical characteristics of patients. The smart tool is based on risk factors for diabetic neuropathy which utilises vibration perception threshold (VPT) and a set of clinical variables as potential predictors. Methods: Significant risk factors included: age, height, weight, urine albumin to creatinine ratio (ACR), HbA1c, total cholesterol and duration of diabetes. The continuous scale VPT was recorded using a Neurothesiometer and classified into three categories based on the clinical thresholds in volts (V): low risk (0 to 20.99 V), medium risk (21 to 30.99 V) and high risk (≥ 31 V). Results: The initial study had shown that by just using patient data (n=5088) an accuracy of 54% was achievable. Having established the effectiveness of the “classical” method a special Neural Network based Proportional Odds Model (NNPOM) was developed which provided the highest level of prediction accuracy (>70%) using the simulated patient data (n=4158). Conclusion: In the absence of any assessment devices or trained personnel it is possible to establish with reasonable accuracy a diagnosis of diabetic neuropathy by means of the clinical parameters of the patient alone
    corecore