2 research outputs found

    Setup Change Scheduling Under Due-date Constraints Using Deep Reinforcement Learning with Self-supervision

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์‚ฐ์—…ยท์กฐ์„ ๊ณตํ•™๋ถ€, 2021.8. ๋ฐ•์ข…ํ—Œ.๋‚ฉ๊ธฐ ์ œ์•ฝ ํ•˜์—์„œ ์…‹์—… ์Šค์ผ€์ค„์„ ์ˆ˜๋ฆฝํ•˜๋Š” ๊ฒƒ์€ ํ˜„์‹ค์˜ ์—ฌ๋Ÿฌ ์ œ์กฐ ์‚ฐ์—…์—์„œ ์‰ฝ๊ฒŒ ์ฐพ์•„ ๋ณผ ์ˆ˜ ์žˆ์œผ๋ฉฐ ํ•™๊ณ„์˜ ๋งŽ์€ ๊ด€์‹ฌ์„ ๋Œ๊ณ  ์žˆ๋Š” ์ค‘๋Œ€ํ•œ ๋ฌธ์ œ์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋‚ฉ๊ธฐ์™€ ์…‹์—… ์ œ์•ฝ์ด ๋™์‹œ์— ์กด์žฌํ•จ์— ๋”ฐ๋ผ ๋ฌธ์ œ์˜ ๋ณต์žก๋„๊ฐ€ ์ฆ๊ฐ€ํ•˜๊ฒŒ ๋˜๋ฉฐ, ์‹œ์‹œ๊ฐ๊ฐ ์ƒˆ๋กœ์šด ์ƒ์‚ฐ ๊ณ„ํš์ด ์ฃผ์–ด์ง€๊ณ  ์ดˆ๊ธฐ ์„ค๋น„ ์ƒํƒœ๊ฐ€ ๋ณ€ํ™”๋˜๋Š” ํ™˜๊ฒฝ์—์„œ ๊ณ ํ’ˆ์งˆ์˜ ์Šค์ผ€์ค„ ์ˆ˜๋ฆฝ์€ ๋” ์–ด๋ ค์›Œ์ง„๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ํ•™์Šต๋œ ์‹ฌ์ธต์‹ ๊ฒฝ๋ง์ด ์ƒ๊ธฐํ•œ ๋ณ€ํ™”๊ฐ€ ๋ฐœ์ƒํ•œ ์Šค์ผ€์ค„๋ง ๋ฌธ์ œ๋„ ์žฌํ•™์Šต ์—†์ด ํ•ด๊ฒฐํ•  ์ˆ˜ ์žˆ๋„๋ก, ์ž๊ธฐ์ง€๋„ ๊ธฐ๋ฐ˜ ์‹ฌ์ธต๊ฐ•ํ™”ํ•™์Šต ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ๊ตฌ์ฒด์ ์œผ๋กœ, ์ƒํƒœ์™€ ํ–‰๋™ ํ‘œํ˜„์„ ์ƒ์‚ฐ ๊ณ„ํš๊ณผ ์„ค๋น„ ์ƒํƒœ์— ๋ฌด๊ด€ํ•œ ์ฐจ์›์„ ๊ฐ–๋„๋ก ์„ค๊ณ„ํ•œ๋‹ค. ๋™์‹œ์— ์ฃผ์–ด์ง„ ์ƒํƒœ๋กœ๋ถ€ํ„ฐ ํšจ์œจ์ ์œผ๋กœ ์‹ ๊ฒฝ๋ง์„ ํ•™์Šตํ•˜๊ธฐ ์œ„ํ•ด ํŒŒ๋ผ๋ฏธํ„ฐ ๊ณต์œ  ๊ตฌ์กฐ๋ฅผ ๋„์ž…ํ•œ๋‹ค. ์ด์— ๋”ํ•˜์—ฌ, ์Šค์ผ€์ค„๋ง ๋ฌธ์ œ์— ์ ํ•ฉํ•œ ์ž๊ธฐ์ง€๋„๋ฅผ ๊ณ ์•ˆํ•˜์—ฌ ์„ค๋น„์™€ ์žก์˜ ์ˆ˜, ์ƒ์‚ฐ ๊ณ„ํš์˜ ๋ถ„ํฌ๊ฐ€ ์ƒ์ดํ•œ ํ‰๊ฐ€ ํ™˜๊ฒฝ์œผ๋กœ๋„ ์ผ๋ฐ˜ํ™” ๊ฐ€๋Šฅํ•œ ์‹ฌ์ธต์‹ ๊ฒฝ๋ง์„ ํ•™์Šตํ•œ๋‹ค. ์ œ์•ˆ ๊ธฐ๋ฒ•์˜ ์œ ํšจ์„ฑ์„ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•ด ํ˜„์‹ค์˜ ๋ณ‘๋ ฌ์„ค๋น„ ๋ฐ ์žก์ƒต ๊ณต์ •์„ ๋ชจ์‚ฌํ•œ ๋Œ€๊ทœ๋ชจ ๋ฐ์ดํ„ฐ์…‹์—์„œ ์ง‘์•ฝ์ ์ธ ์‹คํ—˜์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ์ œ์•ˆ ๊ธฐ๋ฒ•์„ ๋ฉ”ํƒ€ํœด๋ฆฌ์Šคํ‹ฑ ๊ธฐ๋ฒ•๊ณผ ๋‹ค๋ฅธ ๊ฐ•ํ™”ํ•™์Šต ๊ธฐ๋ฐ˜ ๊ธฐ๋ฒ•, ๊ทœ์น™ ๊ธฐ๋ฐ˜ ๊ธฐ๋ฒ•๊ณผ ๋น„๊ตํ•จ์œผ๋กœ์จ ๋‚ฉ๊ธฐ ์ค€์ˆ˜ ์„ฑ๋Šฅ๊ณผ ์—ฐ์‚ฐ ์‹œ๊ฐ„ ๊ด€์ ์—์„œ ์šฐ์ˆ˜์„ฑ์„ ์ž…์ฆํ•˜์˜€๋‹ค. ๋”๋ถˆ์–ด ์ƒํƒœ ํ‘œํ˜„, ํŒŒ๋ผ๋ฏธํ„ฐ ๊ณต์œ , ์ž๊ธฐ์ง€๋„ ๊ฐ๊ฐ์œผ๋กœ ์ธํ•œ ํšจ๊ณผ๋ฅผ ์กฐ์‚ฌํ•œ ๊ฒฐ๊ณผ, ๊ฐœ๋ณ„์ ์œผ๋กœ ์„ฑ๋Šฅ ๊ฐœ์„ ์— ๊ธฐ์—ฌํ•จ์„ ๋ฐํ˜€๋ƒˆ๋‹ค.Setup change scheduling under due-date constraints has attracted much attention from academia and industry due to its practical applications. In a real-world manufacturing system, however, solving the scheduling problem becomes challenging since it is required to address urgent and frequent changes in demand and due-dates of products, and initial machine status. In this thesis, we propose a scheduling framework based on deep reinforcement learning (RL) with self-supervision in which trained neural networks (NNs) are able to solve unseen scheduling problems without re-training even when such changes occur. Specifically, we propose state and action representations whose dimensions are independent of production requirements and due-dates of jobs while accommodating family setups. At the same time, an NN architecture with parameter sharing was utilized to improve the training efficiency. Finally, we devise an additional self-supervised loss specific to the scheduling problem for training the NN scheduler robust to the variations in the numbers of machines and jobs, and distribution of production plans. We carried out extensive experiments in large-scale datasets that simulate the real-world wafer preparation facility and semiconductor packaging line. Experiment results demonstrate that the proposed method outperforms the recent metaheuristics, rule-based, and other RL-based methods in terms of the schedule quality and computation time for obtaining a schedule. Besides, we investigated individual contributions of the state representation, parameter sharing, and self-supervision on the performance improvements.์ œ 1 ์žฅ ์„œ๋ก  1 1.1 ์—ฐ๊ตฌ ๋™๊ธฐ ๋ฐ ๋ฐฐ๊ฒฝ 1 1.2 ์—ฐ๊ตฌ ๋ชฉ์  ๋ฐ ๊ณตํ—Œ 4 1.3 ๋…ผ๋ฌธ๊ตฌ์„ฑ 6 ์ œ 2 ์žฅ ๋ฐฐ๊ฒฝ 7 2.1 ์ˆœ์„œ ์˜์กด์  ์…‹์—…์ด ์žˆ๋Š” ๋‚ฉ๊ธฐ ์ œ์•ฝ ํ•˜์—์„œ์˜ ์Šค์ผ€์ค„๋ง ๋ฌธ์ œ 7 2.1.1 ๋‚ฉ๊ธฐ ์ œ์•ฝ ํ•˜์—์„œ์˜ ์Šค์ผ€์ค„๋ง ๋ฌธ์ œ 7 2.1.2 ํŒจ๋ฐ€๋ฆฌ ์…‹์—…์„ ๊ณ ๋ คํ•œ ๋ณ‘๋ ฌ์„ค๋น„ ์Šค์ผ€์ค„๋ง 8 2.1.3 ์…‹์—… ์ œ์•ฝ์ด ์žˆ๋Š” ์žก์ƒต ์Šค์ผ€์ค„๋ง 9 2.2 ๊ฐ•ํ™”ํ•™์Šต ๊ธฐ๋ฐ˜ ์Šค์ผ€์ค„๋ง 12 2.2.1 ์ด๋ก ์  ๋ฐฐ๊ฒฝ 12 2.2.2 ๊ฐ•ํ™”ํ•™์Šต์„ ์ด์šฉํ•œ ์ œ์กฐ ๋ผ์ธ ์Šค์ผ€์ค„๋ง 13 2.2.3 ์Šค์ผ€์ค„๋ง ๋ฌธ์ œ์—์„œ์˜ ์‹ฌ์ธต๊ฐ•ํ™”ํ•™์Šต 15 2.3 ์ž๊ธฐ์ง€๋„ ๊ธฐ๋ฐ˜ ์‹ฌ์ธต๊ฐ•ํ™”ํ•™์Šต 19 ์ œ 3 ์žฅ ๋ฌธ์ œ ์ •์˜ 22 3.1 ๋ณ‘๋ ฌ์„ค๋น„ ์Šค์ผ€์ค„๋ง ๋ฌธ์ œ 22 3.1.1 ์ง€์—ฐ์‹œ๊ฐ„ ์ตœ์†Œํ™”๋ฅผ ์œ„ํ•œ ๋ณ‘๋ ฌ์„ค๋น„ ์Šค์ผ€์ค„๋ง ๋ฌธ์ œ 22 3.1.2 ํ˜ผํ•ฉ์ •์ˆ˜๊ณ„ํš ๋ชจํ˜• 24 3.1.3 ์˜ˆ์‹œ ๊ณต์ • 25 3.2 ์žก์ƒต ์Šค์ผ€์ค„๋ง ๋ฌธ์ œ 26 3.2.1 ํˆฌ์ž…๋Ÿ‰ ์ตœ๋Œ€ํ™”๋ฅผ ์œ„ํ•œ ์œ ์—ฐ์žก์ƒต ์Šค์ผ€์ค„๋ง 26 3.2.2 ์˜ˆ์‹œ ๊ณต์ • 27 ์ œ 4 ์žฅ ์ž๊ธฐ์ง€๋„ ๊ธฐ๋ฐ˜ ์‹ฌ์ธต๊ฐ•ํ™”ํ•™์Šต์„ ์ด์šฉํ•œ ๋ณ‘๋ ฌ์„ค๋น„ ์Šค์ผ€์ค„๋ง 31 4.1 MDP ๋ชจํ˜• 31 4.1.1 ํ–‰๋™ ์ •์˜ 31 4.1.2 ์ƒํƒœ ํ‘œํ˜„ 32 4.1.3 ๋ณด์ƒ ์ •์˜ 37 4.1.4 ์ƒํƒœ ์ „์ด 38 4.1.5 ์˜ˆ์‹œ 39 4.2 ์‹ ๊ฒฝ๋ง ํ•™์Šต 41 4.2.1 ์‹ฌ์ธต์‹ ๊ฒฝ๋ง ๊ตฌ์กฐ 41 4.2.2 ์†์‹ค ํ•จ์ˆ˜ 42 4.2.3 DQN ํ•™์Šต ์ ˆ์ฐจ 43 4.2.4 DQN ํ‰๊ฐ€ ์ ˆ์ฐจ 44 4.3 ์Šค์ผ€์ค„๋ง ๋ฌธ์ œ์—์„œ์˜ ์ž๊ธฐ์ง€๋„ 46 4.3.1 ๋‚ด์žฌ์  ๋ณด์ƒ ์„ค๊ณ„ 46 4.3.2 ์…‹์—… ์Šค์ผ€์ค„๋ง์„ ์œ„ํ•œ ์„ ํ˜ธ๋„ ์ ์ˆ˜ ์„ค๊ณ„ 47 4.4 ์ž๊ธฐ์ง€๋„ ๊ธฐ๋ฐ˜ DQN ํ•™์Šต 49 4.4.1 ์ž๊ธฐ์ง€๋„ ์†์‹ค ํ•จ์ˆ˜ 49 4.4.2 ํ•™์Šต ์ ˆ์ฐจ 50 ์ œ 5 ์žฅ ์ž๊ธฐ์ง€๋„ ๊ธฐ๋ฐ˜ ์‹ฌ์ธต๊ฐ•ํ™”ํ•™์Šต์„ ์ด์šฉํ•œ ์žก์ƒต ์Šค์ผ€์ค„๋ง 53 5.1 ์Šค์ผ€์ค„๋ง ํ”„๋ ˆ์ž„์›Œํฌ 53 5.1.1 ๋ณ‘๋ชฉ ๊ณต์ • ์ •์˜ 53 5.1.2 ๋””์ŠคํŒจ์น˜ ๊ทœ์น™ 54 5.1.3 ์ด์‚ฐ ์‚ฌ๊ฑด ์‹œ๋ฎฌ๋ ˆ์ดํ„ฐ 55 5.1.4 ์Šค์ผ€์ค„๋Ÿฌ ํ•™์Šต 56 5.2 ํˆฌ์ž… ์ •์ฑ…๊ณผ ์ž๊ธฐ์ง€๋„ 58 5.3 MDP ๋ชจํ˜• ์ˆ˜์ • 59 5.3.1 ํ–‰๋™ ์ •์˜ 59 5.3.2 ์ƒํƒœ ํ‘œํ˜„ 59 5.3.3 ๋ณด์ƒ ์ •์˜ 61 ์ œ 6 ์žฅ ์‹คํ—˜ ๋ฐ ๊ฒฐ๊ณผ 62 6.1 ๋ณ‘๋ ฌ์„ค๋น„ ์Šค์ผ€์ค„๋ง ๋ฌธ์ œ 62 6.1.1 ๋ฐ์ดํ„ฐ์…‹ 62 6.1.2 ์‹คํ—˜ ์„ธํŒ… 64 6.1.3 ์ง€์—ฐ์‹œ๊ฐ„ ์ดํ•ฉ ์„ฑ๋Šฅ ๋น„๊ต 67 6.1.4 ์ƒํƒœ ํ‘œํ˜„ ๋ฐฉ์‹์— ๋”ฐ๋ฅธ ์„ฑ๋Šฅ ๋น„๊ต 72 6.2 ์žก์ƒต ์Šค์ผ€์ค„๋ง ๋ฌธ์ œ 74 6.2.1 ๋ฐ์ดํ„ฐ์…‹ 74 6.2.2 ์‹คํ—˜ ์„ธํŒ… 75 6.2.3 ํˆฌ์ž…๋Ÿ‰ ์„ฑ๋Šฅ ๋น„๊ต 77 6.2.4 ํ–‰๋™ ์ •์˜ ๋ฐฉ์‹์— ๋”ฐ๋ฅธ ์„ฑ๋Šฅ ๋น„๊ต 80 6.3 ์ž๊ธฐ์ง€๋„๋กœ ์ธํ•œ ํšจ๊ณผ 84 6.3.1 ๋ฐ์ดํ„ฐ์…‹ 84 6.3.2 ์‹คํ—˜ ์„ธํŒ… 86 6.3.3 ํŒŒ๋ผ๋ฏธํ„ฐ ๊ณต์œ  ์—ฌ๋ถ€์— ๋”ฐ๋ฅธ ์ž๊ธฐ์ง€๋„์˜ ํšจ๊ณผ 87 6.3.4 ํ•™์Šต ์‹œ์™€ ๋‹ค๋ฅธ ๋ฐ์ดํ„ฐ์…‹์—์„œ์˜ ์„ฑ๋Šฅ ํ‰๊ฐ€ 91 ์ œ 7 ์žฅ ๊ฒฐ๋ก  ๋ฐ ํ–ฅํ›„ ์—ฐ๊ตฌ ๋ฐฉํ–ฅ 96 7.1 ๊ฒฐ๋ก  96 7.2 ํ–ฅํ›„ ์—ฐ๊ตฌ ๋ฐฉํ–ฅ 98 ์ฐธ๊ณ ๋ฌธํ—Œ 100 Abstract 118 ๊ฐ์‚ฌ์˜ ๊ธ€ 120๋ฐ•
    corecore