320,103 research outputs found

    Chaotic Spiral Galaxies

    Full text link
    We study the role of asymptotic curves in supporting the spiral structure of a N-body model simulating a barred spiral galaxy. Chaotic orbits with initial conditions on the unstable asymptotic curves of the main unstable periodic orbits follow the shape of the periodic orbits for an initial interval of time and then they are diffused outwards supporting the spiral structure of the galaxy. Chaotic orbits having small deviations from the unstable periodic orbits, stay close and along the corresponding unstable asymptotic manifolds, supporting the spiral structure for more than 10 rotations of the bar. Chaotic orbits of different Jacobi constants support different parts of the spiral structure. We also study the diffusion rate of chaotic orbits outwards and find that chaotic orbits that support the outer parts of the galaxy are diffused outwards more slowly than the orbits supporting the inner parts of the spiral structure.Comment: 14 pages, 11 figure

    Resonant periodic orbits in the exoplanetary systems

    Full text link
    The planetary dynamics of 4/34/3, 3/23/2, 5/25/2, 3/13/1 and 4/14/1 mean motion resonances is studied by using the model of the general three body problem in a rotating frame and by determining families of periodic orbits for each resonance. Both planar and spatial cases are examined. In the spatial problem, families of periodic orbits are obtained after analytical continuation of vertical critical orbits. The linear stability of orbits is also examined. Concerning initial conditions nearby stable periodic orbits, we obtain long-term planetary stability, while unstable orbits are associated with chaotic evolution that destabilizes the planetary system. Stable periodic orbits are of particular importance in planetary dynamics, since they can host real planetary systems. We found stable orbits up to 6060^\circ of mutual planetary inclination, but in most families, the stability does not exceed 2020^\circ-3030^\circ, depending on the planetary mass ratio. Most of these orbits are very eccentric. Stable inclined circular orbits or orbits of low eccentricity were found in the 4/34/3 and 5/25/2 resonance, respectively.Comment: Accepted for publication in Astrophysics and Space Science. Link to the published article on Springer's website was inserte

    A unified framework for the orbital structure of bars and triaxial ellipsoids

    Get PDF
    We examine a large random sample of orbits in two self-consistent simulations of N-body bars. Orbits in these bars are classified both visually and with a new automated orbit classification method based on frequency analysis. The well-known prograde x1 orbit family originates from the same parent orbit as the box orbits in stationary and rotating triaxial ellipsoids. However, only a small fraction of bar orbits (~4%) have predominately prograde motion like their periodic parent orbit. Most bar orbits arising from the x1 orbit have little net angular momentum in the bar frame, making them equivalent to box orbits in rotating triaxial potentials. In these simulations a small fraction of bar orbits (~7%) are long-axis tubes that behave exactly like those in triaxial ellipsoids: they are tipped about the intermediate axis owing to the Coriolis force, with the sense of tipping determined by the sign of their angular momentum about the long axis. No orbits parented by prograde periodic x2 orbits are found in the pure bar model, but a tiny population (~2%) of short-axis tube orbits parented by retrograde x4 orbits are found. When a central point mass representing a supermassive black hole (SMBH) is grown adiabatically at the center of the bar, those orbits that lie in the immediate vicinity of the SMBH are transformed into precessing Keplerian orbits that belong to the same major families (short-axis tubes, long-axis tubes and boxes) occupying the bar at larger radii. During the growth of an SMBH, the inflow of mass and outward transport of angular momentum transform some x1 and long-axis tube orbits into prograde short-axis tubes. This study has important implications for future attempts to constrain the masses of SMBHs in barred galaxies using orbit-based methods like the Schwarzschild orbit superposition scheme and for understanding the observed features in barred galaxies

    Solar sail orbits at artificial Sun-Earth libration points

    Get PDF
    In this Note a new family of solar sail orbits will be investigated in the sun-Earth circular restricted three-body problem. It will be shown that periodic orbits can be developed that are displaced above or below the plane of the restricted three-body system. Whereas traditional halo orbits are centered on the classical libration points, these new orbits are associated with artificial libration points. The orbits are retrograde, circular orbits with a period half that of the orbit period of the two primary masses of the problem. Numerical analysis of stability and controllability of the orbits shows that the orbits are unstable but completely controllable with both lightness number (sail areal density) and sail attitude

    Periodic orbits around areostationary points in the Martian gravity field

    Full text link
    This study investigates the problem of areostationary orbits around Mars in the three-dimensional space. Areostationary orbits are expected to be used to establish a future telecommunication network for the exploration of Mars. However, no artificial satellites have been placed in these orbits thus far. In this paper, the characteristics of the Martian gravity field are presented, and areostationary points and their linear stability are calculated. By taking linearized solutions in the planar case as the initial guesses and utilizing the Levenberg-Marquardt method, families of periodic orbits around areostationary points are shown to exist. Short-period orbits and long-period orbits are found around linearly stable areostationary points, and only short-period orbits are found around unstable areostationary points. Vertical periodic orbits around both linearly stable and unstable areostationary points are also examined. Satellites in these periodic orbits could depart from areostationary points by a few degrees in longitude, which would facilitate observation of the Martian topography. Based on the eigenvalues of the monodromy matrix, the evolution of the stability index of periodic orbits is determined. Finally, heteroclinic orbits connecting the two unstable areostationary points are found, providing the possibility for orbital transfer with minimal energy consumption.Comment: 25 pages, 10 figures, accepted for publication in Research in Astronomy and Astrophysic

    Chaotic orbits in a 3D galactic dynamical model with a double nucleus

    Full text link
    A 3D-dynamical model is constructed for the study of motion in the central regions of a disk galaxy with a double nucleus. Using the results of the 2D-model, we find the regions of initial conditions in the (x,px,z,py)=EJ, (y=pz=0) phase space producing regular or chaotic orbits. The majority of stars are on chaotic orbits. All chaotic orbits come arbitrary close to one or to both nuclei. Regular orbits are those starting near the stable periodic orbits of the 2D-system with small values of z0. All regular orbits circulate around only one of the two nuclei.Comment: Published in Mechanics Research Communications journa

    Novel orbits of Mercury, Venus and Mars enabled using low-thrust propulsion

    Get PDF
    Exploration of the inner planets of the Solar System is vital to significantly enhance the understanding of the formulation of the Earth and other planets. This paper therefore considers the development of novel orbits of Mars, Mercury and Venus to enhance the opportunities for remote sensing of these planets. Continuous acceleration is used to extend the critical inclination of highly elliptical orbits at each planet and is shown to require modest thrust magnitudes. This paper also presents the extension of existing sun-synchronous orbits around Mars. However, unlike Earth and Mars, natural sun-synchronous orbits do not exist at Mercury or Venus. This research therefore also uses continuous acceleration to enable circular and elliptical sun-synchronous orbits, by ensuring that the orbit's nodal precession rate matches the planets mean orbital rate around the Sun, such that the lighting along the ground-track remains approximately constant over the mission duration. This property is useful both in terms of spacecraft design, due to the constant thermal conditions, and for comparison of images. Considerably high thrust levels are however required to enable these orbits, which are prohibitively high for orbits with inclinations around 901. These orbits therefore require some development in electric propulsion systems before becoming feasible
    corecore