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Solar Sail Orbits at Artificial
Sun–Earth Libration Points

Hexi Baoyin∗ and Colin R. McInnes†

University of Strathclyde,
Glasgow, Scotland G1 1XJ, United Kingdom

Introduction

S INCE the pioneering works of Farquhar,1 Farquhar et al.,2

Howell,3 Breakwell and Brown,4 and many others, libration
point halo orbits in the restricted three-body problem have attracted
a great deal of attention. Other researchers5,6 have investigated the
dynamics associated with solar sails in the restricted three-body
problem. In principle, solar sails provide new families of libration
points (libration surfaces, in fact) everywhere inside regions con-
nected to the classical libration points. These artificial equilibria
have potential applications for future space physics and Earth ob-
servation missions.

In this Note a new family of solar sail orbits will be investigated
in the sun–Earth circular restricted three-body problem. It will be
shown that periodic orbits can be developed that are displaced above
or below the plane of the restricted three-body system. Whereas
traditional halo orbits are centered on the classical libration points,
these new orbits are associated with artificial libration points. The
orbits are retrograde, circular orbits with a period half that of the
orbit period of the two primary masses of the problem. Numerical
analysis of stability and controllability of the orbits shows that the
orbits are unstable but completely controllable with both lightness
number (sail areal density) and sail attitude.

Displaced Orbits
In this Note, the sun–Earth circular restricted three-body system

is considered for a solar sail, with a dimensionless equation of mo-
tion adopted with its representation closely following the work of
McInnes et al.6 Let the mass of the Earth be µ and the mass of the
sun be 1 − µ, where µ = 3.036 × 10−6 for the sun–Earth system.
Then the equation of motion of the solar sail in a rotating frame of
reference may be written as6

r̈ + 2ω × ṙ + ∇U = a (1)

where ω is the angular velocity vector of the rotating frame and r is
the position vector of the solar sail relative to the center of mass of
the two primaries. In the dimensionless representation, the angular

velocity vector has unit magnitude and is directed along the z axis,
normal to the x–y plane of the restricted three-body system. The
effective potential function U is defined as

U = V + � (2)

where V is the gravitational potential function of the two primaries
and � is the potential due to the rotation of the frame of reference,
defined as

V = −[(1 − µ)/r1 + µ/r2] (3)

� = − 1
2 (ω × r) · (ω × r) (4)

The solar radiation pressure acceleration a is defined as

a = β
[
(1 − µ)

/
r 2

1

][
(r1 · n)2

/
r 2

1

]
n (5)

where β is the lightness number of the solar sail and n is the sail unit
normal vector. The sail lightness number is related to the sail areal
density σ by β = 1.53/σ g · m−2 (Ref. 6). Because the solar radia-
tion pressure force can never be directed sunward, the sail attitude
is constrained such that (r1 · n) ≥ 0. Therefore, we cannot obtain
equilibrium solutions in the entire space and there are natural for-
bidden regions, detailed discussion of which can be found in Ref. 6.

To obtain artificial equilibrium surfaces, previous studies have
considered the case where r̈ = ṙ = 0 and so ∇U = a (Ref. 6). How-
ever, because the sail attitude and lightness number can in principle
be controlled in Eq. (1) (small variations in the sail area can trim β),
it is possible that the sail attitude and lightness number are controlled
so that

∇U = a (6)

everywhere on an orbit in the allowed region. Then the following
simple equation of motion can be obtained from Eq. (1):

r̈ + 2ω × ṙ = 0 (7)

This represents an orbit that will always be moving on an equilibrium
surface. Equation (7) is completely solvable, and its solutions can
be written as

x(t) = [x(0) + ẏ(0)/2] − [ẏ(0)/2] cos 2t + [ẋ(0)/2] sin 2t

y(t) = [y(0) − ẋ(0)/2] + [ẋ(0)/2] cos 2t + [ẏ(0)/2] sin 2t

z(t) = ż(0)t + z(0) (8)

where (0) represents the initial conditions of the displacement and
velocity of the solar sail in the rotating frame of reference.

In Eqs. (8), taking the appropriate initial values, some interest-
ing orbits can be generated in the plane of the restricted three-body
system, or parallel to the plane. Setting z(0) = 0 and ż(0) = 0, retro-
grade circular orbits in the system plane with a dimensionless period
of π (half-year) will be obtained. Similarly, when setting ż(0) = 0
and z(0) �= 0, one can obtain an orbit displaced in the z direction.
However, because of limitations on the sail lightness number and
sail attitude control, orbits located near or on an equilibrium surface,
or a place where the change in lightness number between neighbor-
ing equilibrium surfaces is small, are desirable. According to Ref. 6,



1329

Table 1 Orbit parameters

Orbit x0 r0 z0

1 0.9856 0.001 0.01
2 0.9866 0.001 0.01
3 0.9876 0.001 0.01

Fig. 1 Orbit illustration.

Fig. 2 Lightness number variations.

near the traditional libration points, the equilibrium surfaces are ap-
proximately elliptical and the change in lightness number between
neighboring equilibrium surfaces is small. Therefore, these are suit-
able locations for achieving this family of periodic orbits, ensuring
that the required variations in lightness number and sail attitude are
small. Because the equilibrium surfaces are symmetric with respect
to the x–z plane, the center of this family of orbits should be located
in this plane (y0 = 0).

The general process of designing this family of orbits first in-
volves generation of the equilibrium surfaces in the vicinity of the
required orbit using the method of Ref. 6. Then, according to these
equilibrium surfaces, the approximate orbit center is determined,
which is usually taken near the center of an elliptical equilibrium
surface. Following this process we designed several example orbits
in the vicinity of L1 (Fig. 1) with parameters (Table 1) where the
position of L1 is (0.989990864, 0, 0) calculated according to Ref. 7.

For the in-plane case, z(0) = ż(0) = 0. If the other initial con-
ditions in Eq. (8) are selected as ẋ(0) = 0 and y(0) = 0, circular
orbits in the system plane with radius r0 = |ẏ(0)/2| and center
(x0, y0, z0) = [x(0) + ẏ(0)/2, 0, 0] will be obtained so that the or-
bit equations are

x(t) = x0 − r0 cos 2t, y(t) = r0 sin 2t (9)

It can be seen that the dimensionless orbit period is π and that the
orbit is retrograde relative to the rotating frame of reference. In the
displaced case, z(0) = z0 �= 0 and ż(0) = 0. Similarly, we can obtain
an orbit with center (x0, y0, z0) = [x(0) + ẏ(0)/2, 0, z(0)] and the
same orbit equations.

In Figs. 2 and 3, the lightness number and sail attitude changes
required for the orbits defined in Table 1 are given over an interval of
two dimensionless orbit periods (1 year). These orbits are displaced
approximately 1.5 × 106 km over L1 with radii of 150 × 103 km.
Orbit 2 is the most interesting, because the change in its lightness
number is less than 2%, and the change in sail pitch angle (angle of
the sail normal relative to the sun line) is less than 8 deg. This means
that the change in sail lightness number can be easily achieved in
practice, perhaps using small articulated vanes to trim the effective
sail area. This family of orbits can also be generated in the vicinity
of the L2 point.

Fig. 3 Sail pitch angle variations.

Orbit Stability and Control
To determine the orbit stability in the linear sense, we apply an in-

finitesimal perturbation δ to the periodic orbit, and then the variation
of Eq. (1) can be obtained:

δ̈ + 2ω × δ̇ +
(

∂(∇U )

∂r
− ∂a

∂r

)
δ = 0 (10)

where the periodic orbit solution is substituted into the matrix

K =
[

∂(∇U )

∂r
− ∂a

∂r

]

and where

∂a
∂r

= 2∇U∇U T

(r1 · ∇U )
− 4∇UrT

1

(r1 · r1)
(11)

Because the matrix K is time-dependent, the orbit stability in the
linear sense becomes the stability of a linear system with time-
dependent coefficients. Equation (10) can be represented in the form
of first-order differential equations as

ς̇ = Aς (12)

where

ς = [δ, δ̇]T , A =
[

0 I

−K −S

]

I is a unit matrix, and

S =




0 −2 0

2 0 0

0 0 0





Because the system has time-dependent coefficients, its stability
cannot be directly determined by the eigenvalues of matrix A.
Determining the stability of this system is much more difficult.
However, there is a sufficient condition for asymptotic stability
of time-dependent linear systems.8 If the eigenvalues of the ma-
trix H = (A + AT )/2 are all negative, then the system defined by
Eq. (12) is asymptotically stable. In this case,

H = 1

2

{[
0 I

−K −S

]
+

[
0 I

−K −S

]T
}

= 1

2

[
0 I − K T

I − K 0

]

(13)
This is a real symmetric matrix; therefore, its eigenvalues all are
real. On the other hand, from the special structure of the matrix
H , it is not difficult to show that the eigenvalues of the matrix
1
4 (I − K )T (I − K ) are the square of the eigenvalues of matrix H .
Furthermore, the matrix 1

4 (I − K )T (I − K ) also is a real symmetric
matrix with real eigenvalues, and so half the eigenvalues of matrix
H must be positive. Therefore, the system defined by Eq. (12) can-
not satisfy this asymptotically stable condition. For a periodic orbit,



Table 2 Poles and control gains for orbit 2

Variable Values

Desired poles −0.5 + i −0.5 − i −1 + i −1 − i −0.5 + 1.6i −0.5 − 1.6i

Sail attitude control G =
[

47.2195 −0.9030 −9.6883 9.74850 19.2408 −1.0943
−4.5786 59.7843 1.14250 −57.702 27.8202 0.80390
−82.516 2.33290 40.6673 −12.918 −20.391 57.6088

]

Lightness number control G = [37.2837 −6.9285 −0.8041 9.0263 11.9220 −6.0160]

however, because A(t) = A(t + T ), where T is the period of the
orbit, according to Floquet theory, the stability of a periodic coeffi-
cient linear system can be numerically determined.1 The basic idea
is to first define a matrix X (t) by

Ẋ(t) = A(t)X (t) (14)

where X (0) = I is an appropriate dimensional unit matrix. Then
Eq. (14) is numerically integrated to obtain X (T ). If the eigenval-
ues λi of matrix X (T ) satisfy |λi | ≤ 1, then the system is stable;
otherwise, it is unstable. We have implemented the numerical simu-
lation of numerous orbits, including the orbits presented in Table 1,
and found that these orbits are all unstable. Therefore, in practice,
the orbits must be controlled.

For a solar sail, lightness number control and sail attitude control
are usually considered. Writing Eq. (12) with a linear control term
yields

ς̇ = Aς + Bu (15)

where, in the case of lightness number control,

B =
[

0 0 0
∂ax

∂β

∂ay

∂β

∂az

∂β

]T

u = δβ, and a = [ax , ay, az]T . In the case of sail attitude control,

B =
[

0
∂a
∂n

]T

3 × 6

where

∂a
∂n

= |∇U |I + 2|∇U |
(∇U · r1)

∇UrT
1 (16)

and u = δn, where matrices A and B are calculated on the periodic
orbit. Because both A and B are time-dependent matrices, control-
lability of the time-varying system cannot be determined by the
controllability matrix Q = [B AB A2 B A3 B A4 B A5 B]. How-
ever, numerical investigation of the controllability of a particular
orbit is possible. One can verify the controllability by verifying the
rank of the controllability matrix P of the system

P(t, t0) =
∫ t

t0

�(t0, τ )B(τ )BT (τ )�T (t0, τ ) dτ (17)

where � is the system transition matrix. The numerical results show
that these three orbits are all completely controllable with both light-
ness number control and sail attitude control.

Next we will provide a simple linear feedback control scheme
for orbit 2, designed by a pole assignment technique. In this case,
however, although matrix A is time varying, from the special struc-
ture of this matrix and orbit parameters (x0 � r0) it is not difficult
to show that the time-varying part of the matrix is relatively small.
Representing matrices A and B as

A(t) = A0 + 	A(t) (18a)

B(t) = B0 + 	B(t) (18b)

satisfies ‖A0‖ � ‖	A(t)‖ and ‖B0‖ � ‖	B(t)‖, where A0 and B0

are constant matrices. Taking advantage of these properties, a simple
feedback control law can be designed. First we design the feedback
gains for the system

ς̇ = A0ς + B0u (19)

where full state feedback is assumed to be defined by

u = Gς (20)

and where gain matrix G will be obtained by pole assignment. The
desired poles and designed gains are given in Table 2. Finally, the
stability of the controlled system has to be numerically checked by
using the aforementioned Floquet theory, because these gains are
not exactly designed for the original system defined by Eq. (15),
but for the approximate system defined by Eq. (19). The numeri-
cal results show that the controlled system is stabilized with these
gains.

Conclusions
A family of displaced solar sail orbits near the sun–Earth libration

points are presented in this Note. These orbits are either displaced
over the L1 or L2 points and parallel to system plane or are in the
system plane and near the libration points. Several particular orbits
are designed and their stability and controllability are discussed by
means of numerical methods. The results indicate that this family
of periodic orbits is usually unstable but completely controllable by
use of the sail attitude or lightness number control.

References
1Farquhar, R. W., “The Control and Use of Libration-Point Satellite,”

NASA TR R-346, Sept. 1970.
2Farquhar, R. W., Muhonen, D. P., Newman, C. R., and Heuber-

ber, H. S., “Trajectories and Orbital Maneuvers for the First Libration-
Point Satellite,” Journal of Guidance and Control, Vol. 3, No. 6, 1980,
pp. 549–554.

3Howell, K. C., “Three-Dimensional, Periodic, ‘Halo’ Orbit,” Celestial
Mechanics, Vol. 32, April 1984, pp. 53–71.

4Breakwell, J. V., and Brown, J. V., “The ‘Halo’ Family of 3-Dimensional
Periodic Orbits in the Earth-Moon Restricted 3-Body Problem,” Celestial
Mechanics, Vol. 20, Nov. 1979, pp. 389–404.

5McInnes, C. R., Solar Sailing: Technology, Dynamics and Mission Ap-
plications, Springer Praxis, London, 1999.

6McInnes, C. R., Mcdonald, A. J. C., Simmon, J. F. L., and Mac-
Donald, E. W., “Solar Sail Parking in Restricted Three-Body System,”
Journal of Guidance, Control, and Dynamics, Vol. 17, No. 2, 1994,
pp. 399–406.

7Szebehely, V., Theory of Orbits: The Restricted Problem of Three Bodies,
Academic Press, New York, 1967.

8Afanasev, V. N., Kolmanovskii, V. B., and Nosov, V. R., Mathe-
matical Theory of Control System Design, Kluwer Academic, London,
1996.


