1,598 research outputs found

    Efficient indexing of necklaces and irreducible polynomials over finite fields

    Full text link
    We study the problem of indexing irreducible polynomials over finite fields, and give the first efficient algorithm for this problem. Specifically, we show the existence of poly(n, log q)-size circuits that compute a bijection between {1, ... , |S|} and the set S of all irreducible, monic, univariate polynomials of degree n over a finite field F_q. This has applications in pseudorandomness, and answers an open question of Alon, Goldreich, H{\aa}stad and Peralta[AGHP]. Our approach uses a connection between irreducible polynomials and necklaces ( equivalence classes of strings under cyclic rotation). Along the way, we give the first efficient algorithm for indexing necklaces of a given length over a given alphabet, which may be of independent interest

    Combinatorial Identities from the Spectral Theory of Quantum Graphs

    Full text link
    We present a few combinatorial identities which were encountered in our work on the spectral theory of quantum graphs. They establish a new connection between the theory of random matrix ensembles and combinatorics.Comment: 16 pages, RevTeX, 1 figur

    Trace Formulae and Spectral Statistics for Discrete Laplacians on Regular Graphs (I)

    Full text link
    Trace formulae for d-regular graphs are derived and used to express the spectral density in terms of the periodic walks on the graphs under consideration. The trace formulae depend on a parameter w which can be tuned continuously to assign different weights to different periodic orbit contributions. At the special value w=1, the only periodic orbits which contribute are the non back- scattering orbits, and the smooth part in the trace formula coincides with the Kesten-McKay expression. As w deviates from unity, non vanishing weights are assigned to the periodic walks with back-scatter, and the smooth part is modified in a consistent way. The trace formulae presented here are the tools to be used in the second paper in this sequence, for showing the connection between the spectral properties of d-regular graphs and the theory of random matrices.Comment: 22 pages, 3 figure

    The Graph Isomorphism Problem and approximate categories

    Full text link
    It is unknown whether two graphs can be tested for isomorphism in polynomial time. A classical approach to the Graph Isomorphism Problem is the d-dimensional Weisfeiler-Lehman algorithm. The d-dimensional WL-algorithm can distinguish many pairs of graphs, but the pairs of non-isomorphic graphs constructed by Cai, Furer and Immerman it cannot distinguish. If d is fixed, then the WL-algorithm runs in polynomial time. We will formulate the Graph Isomorphism Problem as an Orbit Problem: Given a representation V of an algebraic group G and two elements v_1,v_2 in V, decide whether v_1 and v_2 lie in the same G-orbit. Then we attack the Orbit Problem by constructing certain approximate categories C_d(V), d=1,2,3,... whose objects include the elements of V. We show that v_1 and v_2 are not in the same orbit by showing that they are not isomorphic in the category C_d(V) for some d. For every d this gives us an algorithm for isomorphism testing. We will show that the WL-algorithms reduce to our algorithms, but that our algorithms cannot be reduced to the WL-algorithms. Unlike the Weisfeiler-Lehman algorithm, our algorithm can distinguish the Cai-Furer-Immerman graphs in polynomial time.Comment: 29 page

    Combinatorial identities for binary necklaces from exact ray-splitting trace formulae

    Full text link
    Based on an exact trace formula for a one-dimensional ray-splitting system, we derive novel combinatorial identities for cyclic binary sequences (P\'olya necklaces).Comment: 15 page
    corecore