3,297 research outputs found

    The Boston University Photonics Center annual report 2014-2015

    Full text link
    This repository item contains an annual report that summarizes activities of the Boston University Photonics Center in the 2014-2015 academic year. The report provides quantitative and descriptive information regarding photonics programs in education, interdisciplinary research, business innovation, and technology development. The Boston University Photonics Center (BUPC) is an interdisciplinary hub for education, research, scholarship, innovation, and technology development associated with practical uses of light.This has been a good year for the Photonics Center. In the following pages, you will see that the center’s faculty received prodigious honors and awards, generated more than 100 notable scholarly publications in the leading journals in our field, and attracted $18.6M in new research grants/contracts. Faculty and staff also expanded their efforts in education and training, and were awarded two new National Science Foundation– sponsored sites for Research Experiences for Undergraduates and for Teachers. As a community, we hosted a compelling series of distinguished invited speakers, and emphasized the theme of Advanced Materials by Design for the 21st Century at our annual symposium. We continued to support the National Photonics Initiative, and are a part of a New York–based consortium that won the competition for a new photonics- themed node in the National Network of Manufacturing Institutes. Highlights of our research achievements for the year include an ambitious new DoD-sponsored grant for Multi-Scale Multi-Disciplinary Modeling of Electronic Materials led by Professor Enrico Bellotti, continued support of our NIH-sponsored Center for Innovation in Point of Care Technologies for the Future of Cancer Care led by Professor Catherine Klapperich, a new award for Personalized Chemotherapy Through Rapid Monitoring with Wearable Optics led by Assistant Professor Darren Roblyer, and a new award from DARPA to conduct research on Calligraphy to Build Tunable Optical Metamaterials led by Professor Dave Bishop. We were also honored to receive an award from the Massachusetts Life Sciences Center to develop a biophotonics laboratory in our Business Innovation Center

    The Boston University Photonics Center annual report 2014-2015

    Full text link
    This repository item contains an annual report that summarizes activities of the Boston University Photonics Center in the 2014-2015 academic year. The report provides quantitative and descriptive information regarding photonics programs in education, interdisciplinary research, business innovation, and technology development. The Boston University Photonics Center (BUPC) is an interdisciplinary hub for education, research, scholarship, innovation, and technology development associated with practical uses of light.This has been a good year for the Photonics Center. In the following pages, you will see that the center’s faculty received prodigious honors and awards, generated more than 100 notable scholarly publications in the leading journals in our field, and attracted $18.6M in new research grants/contracts. Faculty and staff also expanded their efforts in education and training, and were awarded two new National Science Foundation– sponsored sites for Research Experiences for Undergraduates and for Teachers. As a community, we hosted a compelling series of distinguished invited speakers, and emphasized the theme of Advanced Materials by Design for the 21st Century at our annual symposium. We continued to support the National Photonics Initiative, and are a part of a New York–based consortium that won the competition for a new photonics- themed node in the National Network of Manufacturing Institutes. Highlights of our research achievements for the year include an ambitious new DoD-sponsored grant for Multi-Scale Multi-Disciplinary Modeling of Electronic Materials led by Professor Enrico Bellotti, continued support of our NIH-sponsored Center for Innovation in Point of Care Technologies for the Future of Cancer Care led by Professor Catherine Klapperich, a new award for Personalized Chemotherapy Through Rapid Monitoring with Wearable Optics led by Assistant Professor Darren Roblyer, and a new award from DARPA to conduct research on Calligraphy to Build Tunable Optical Metamaterials led by Professor Dave Bishop. We were also honored to receive an award from the Massachusetts Life Sciences Center to develop a biophotonics laboratory in our Business Innovation Center

    Mathematical skills in the workplace: final report to the Science Technology and Mathematics Council

    Get PDF

    Milestones chemical technology institute: our past and present

    Full text link
    The article is devoted to the 95th anniversary of the Chemical technological Institute (CTI) of the Ural Federal University named after the first President of Russia B. N. Yeltsin (UrFU), which will be held in October 2015. Over the years Chemical technological Institute (CTI) has undergone many structure transformations in accordance with the tasks which were set before it the time and the development of our country. Currently this is a fairly large educational and research Institute, which employs more than 100 lecturers including more than 70 associate professors – candidates (PhD), 30 professors – doctors of Sciences (Hb), 3 academics and 1 corresponding member of RAS, trained more than 850 students

    Graduate studies on optoelectronics in Argentina: an experience

    Get PDF
    The number of graduate programs in Optoelectronics in Argentina is scarce. The current Optics and Photonics Education Directory lists only three programs. One of them was launched in 2001 in the Facultad de Ingeniería (College of Engineering), Universidad de Buenos Aires (UBA). This was the first graduate program in the field, leading to a Master Degree in Optoelectronics. This decision arose from the demand of telecommunications industries and several estate- or private-funded research institutions working with us in the fields of lasers, optics, remote sensing, etc. A great bonus was the steady work, during several decades, of research groups in the College on the development of different type of lasers and optical non destructive tests and their engineering applications. As happened in many engineering graduate programs in Argentina at that time, few non full-time students could finish their studies, which called for 800 hours of traditional lecture-recitation classes, and the Master Thesis. In recent years Argentine Education authorities downsized the Master programs to 700 hours of blended learning and we redesigned the Graduate Optoelectronic Engineering Program to meet the challenge, dividing it in two successive one year programs, the first aimed at a professional training for almost immediate insertion in the labor market (called Especialización en Ingeniería Optoelectrónica), and the second (called Maestría en Ingeniería Optoelectrónica y Fotónica) aimed at a more academic and research target to comply with the UBA standards for Master degrees. The present work is a presentation of the new program design, which has begun in the current year. © (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.Fil: Fernández, Juan Carlos. Universidad de Buenos Aires. Facultad de Ingeniería; ArgentinaFil: Garea, María T.. Universidad de Buenos Aires. Facultad de Ingeniería; ArgentinaFil: Isaurralde, Silvia. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Perez, Liliana Ines. Universidad de Buenos Aires. Facultad de Ingeniería; ArgentinaFil: Raffo, Carlos A.. Universidad de Buenos Aires. Facultad de Ingeniería; Argentin

    The Lightwave Programme and Roadshow: An Overview and Update

    No full text
    While optics and photonics are exciting disciplines with much research, industrial, and economic potential in the 21st century, this appreciation is only shared by a limited number of science, technology, engineering, and mathematics (STEM) experts, and there is a recognized STEM skills shortage. To widen the pool of talent, it is essential to expose students to optics and photonics throughout their education and particularly starting at a young age. The Lightwave programme, consisting of an interactive collection of photonics demonstrations and experiments targeted for primary school students, was thus created to facilitate this endeavor. The programme is run by doctoral students forming a team of “Lightwave ambassadors”. All the demonstrations that comprise Lightwave can be easily integrated into a physics curriculum, enabling educators to generate more student interest and enhance the image of science through an interactive pedagogy. We provide a description of the programme at its initial inception, and report on the recent additions and updates that have brought about its success, moving from a purely outreach driven focus to engaging pupils with our own research. We also discuss our approach to ensuring that our team of ambassadors are from diverse backgrounds and use both male and female students as role models. Finally, we reflect on how evaluation methods to obtain feedback from our activities are key to Lightwave's sustainability and in improving the perception of optics and photonics

    The Boston University Photonics Center annual report 2015-2016

    Full text link
    This repository item contains an annual report that summarizes activities of the Boston University Photonics Center in the 2015-2016 academic year. The report provides quantitative and descriptive information regarding photonics programs in education, interdisciplinary research, business innovation, and technology development. The Boston University Photonics Center (BUPC) is an interdisciplinary hub for education, research, scholarship, innovation, and technology development associated with practical uses of light.This has been a good year for the Photonics Center. In the following pages, you will see that this year the Center’s faculty received prodigious honors and awards, generated more than 100 notable scholarly publications in the leading journals in our field, and attracted $18.9M in new research grants/contracts. Faculty and staff also expanded their efforts in education and training, and cooperated in supporting National Science Foundation sponsored Sites for Research Experiences for Undergraduates and for Research Experiences for Teachers. As a community, we emphasized the theme of “Frontiers in Plasmonics as Enabling Science in Photonics and Beyond” at our annual symposium, hosted by Bjoern Reinhard. We continued to support the National Photonics Initiative, and contributed as a cooperating site in the American Institute for Manufacturing Integrated Photonics (AIM Photonics) which began this year as a new photonics-themed node in the National Network of Manufacturing Institutes. Highlights of our research achievements for the year include an ambitious new DoD-sponsored grant for Development of Less Toxic Treatment Strategies for Metastatic and Drug Resistant Breast Cancer Using Noninvasive Optical Monitoring led by Professor Darren Roblyer, continued support of our NIH-sponsored, Center for Innovation in Point of Care Technologies for the Future of Cancer Care led by Professor Cathy Klapperich, and an exciting confluence of new grant awards in the area of Neurophotonics led by Professors Christopher Gabel, Timothy Gardner, Xue Han, Jerome Mertz, Siddharth Ramachandran, Jason Ritt, and John White. Neurophotonics is fast becoming a leading area of strength of the Photonics Center. The Industry/University Collaborative Research Center, which has become the centerpiece of our translational biophotonics program, continues to focus onadvancing the health care and medical device industries, and has entered its sixth year of operation with a strong record of achievement and with the support of an enthusiastic industrial membership base

    Optical Science & Engineering 2010 APR Self-Study & Documents

    Get PDF
    UNM Optical Sciences & Engineering APR self-study report, review team report, response to review report, and initial action plan for Spring 2010, fulfilling requirements of the Higher Learning Commission

    An Engineering Physics Introduction to Electronics for ECE Sophomores

    Get PDF
    Electronic devices and circuits are fundamental parts of undergraduate curricula in electrical engineering and computer engineering (ECE). A sophomore-level course that gives a balanced treatment of semiconductor device physics and electronic circuit analysis is described. The course topics are semiconductor physics, diodes, transistors, operational amplifiers, and optoelectronics. The course is a prerequisite for upper-level electronics, semiconductor physics, and semiconductor circuit layout curricula. A stronger link between physical principles and device behavior and an improved sequence in electronics instruction are outcomes
    corecore