16,479 research outputs found

    Asymptotic Signal Detection Rates with 1-bit Array Measurements

    Full text link
    This work considers detecting the presence of a band-limited random radio source using an antenna array featuring a low-complexity digitization process with single-bit output resolution. In contrast to high-resolution analog-to-digital conversion, such a direct transformation of the analog radio measurements to a binary representation can be implemented hardware and energy-efficient. However, the probabilistic model of the binary receive data becomes challenging. Therefore, we first consider the Neyman-Pearson test within generic exponential families and derive the associated analytic detection rate expressions. Then we use a specific replacement model for the binary likelihood and study the achievable detection performance with 1- bit radio array measurements. As an application, we explore the capability of a low-complexity GPS spectrum monitoring system with different numbers of antennas and different observation intervals. Results show that with a moderate amount of binary sensors it is possible to reliably perform the monitoring task

    A review of RFI mitigation techniques in microwave radiometry

    Get PDF
    Radio frequency interference (RFI) is a well-known problem in microwave radiometry (MWR). Any undesired signal overlapping the MWR protected frequency bands introduces a bias in the measurements, which can corrupt the retrieved geophysical parameters. This paper presents a literature review of RFI detection and mitigation techniques for microwave radiometry from space. The reviewed techniques are divided between real aperture and aperture synthesis. A discussion and assessment of the application of RFI mitigation techniques is presented for each type of radiometer.Peer ReviewedPostprint (published version

    Quantization of Prior Probabilities for Hypothesis Testing

    Full text link
    Bayesian hypothesis testing is investigated when the prior probabilities of the hypotheses, taken as a random vector, are quantized. Nearest neighbor and centroid conditions are derived using mean Bayes risk error as a distortion measure for quantization. A high-resolution approximation to the distortion-rate function is also obtained. Human decision making in segregated populations is studied assuming Bayesian hypothesis testing with quantized priors
    • …
    corecore