2,691 research outputs found

    Optimum Resource Allocation for Relay Networks with Differential Modulation

    Get PDF
    Abstract-In this paper, we investigate the resource allocation in a differentially modulated relay network. In addition to the energy optimization, we also consider location optimization to minimize the average symbol error rate (SER). The closedform solution is derived for the single-relay case, and formulas allowing numerical search are provided for multiple-relay cases. Analytical and simulated comparisons confirm that the optimized systems provide considerable improvement over the unoptimized systems, and that the minimum SER can be achieved via the joint energy-location optimization. Index Terms-Differential phase shift keying, resource management, relays, cooperative system

    Dispensing with channel estimation: differentially modulated cooperative wireless communications

    No full text
    As a benefit of bypassing the potentially excessive complexity and yet inaccurate channel estimation, differentially encoded modulation in conjunction with low-complexity noncoherent detection constitutes a viable candidate for user-cooperative systems, where estimating all the links by the relays is unrealistic. In order to stimulate further research on differentially modulated cooperative systems, a number of fundamental challenges encountered in their practical implementations are addressed, including the time-variant-channel-induced performance erosion, flexible cooperative protocol designs, resource allocation as well as its high-spectral-efficiency transceiver design. Our investigations demonstrate the quantitative benefits of cooperative wireless networks both from a pure capacity perspective as well as from a practical system design perspective

    Near-Capacity Irregular Convolutional Coded Cooperative Differential Linear Dispersion Codes Using Multiple-Symbol Differential Detection

    No full text
    We propose a novel near-capacity Multiple-Symbol Differential Decoding (MSDD) aided cooperative Differential Linear Dispersion Code (DLDC) scheme, which exhibits a high grade of system design flexibility in terms of the choice of activated relays and the DLDC's rate allocation. More specifically, the system has the freedom to activate a range of DLDCs depending on both the number of relays available in the network, as well as on their position, throughput and complexity considerations

    Relay-Induced Error Propagation Reduction for Decode-and-Forward Cooperative Communications

    No full text
    An attractive hybrid method of mitigating the effects of error propagation that may be imposed by the relay node (RN) on the destination node (DN) is proposed. We selected the most appropriate relay location for achieving a specific target Bit Error Ratio (BER) at the relay and signalled the RN-BER to the DN. The knowledge of this BER was then exploited by the decoder at the destination. Our simulation results show that when the BER at the RN is low, we do not have to activate the RN-BER aided decoder at the DN. However, when the RN-BER is high, significant system performance improvements may be achieved by activating the proposed RN-BER based decoding technique at the DN. For example, a power-reduction of up to about 19dB was recorded at a DN BER of 10-4
    corecore