187 research outputs found

    Tomlinson-Harashima Precoding Based Transceiver Design for MIMO Relay Systems With Channel Covariance Information

    Get PDF
    In this paper, we investigate the performance of the Tomlinson-Harashima (TH) precoder based nonlinear transceiver design for a nonregenerative multiple-input multiple-output (MIMO) relay system assuming that the full channel state information (CSI) of the source-relay link is known, while only the channel covariance information (CCI) of the relay-destination link is available at the relay node. We first derive the structure of the optimal TH precoding matrix and the source precoding matrix that minimize the mean-squared error (MSE) of the signal waveform estimation at the destination. Then we develop an iterative algorithm to optimize the relay precoding matrix. To reduce the computational complexity of the iterative algorithm, we propose a simplified precoding matrices design scheme. Numerical results show that the proposed precoding matrices design schemes have a better bit-error-rate performance than existing algorithms

    Robust transceiver designs for MIMO relay communication systems

    Get PDF
    The thesis investigates robust linear and non-linear transceiver design problems for wireless MIMO relay communication systems with the assumption that the partial information of the channel is available at the relay node. The joint source and relay optimization problems for MIMO relay systems are highly nonconvex, in general. We transform the problems into suitable forms which can be efficiently solved using standard convex optimization techniques. The proposed design schemes outperform the existing techniques

    Joint Source and Relay Precoding Designs for MIMO Two-Way Relaying Based on MSE Criterion

    Full text link
    Properly designed precoders can significantly improve the spectral efficiency of multiple-input multiple-output (MIMO) relay systems. In this paper, we investigate joint source and relay precoding design based on the mean-square-error (MSE) criterion in MIMO two-way relay systems, where two multi-antenna source nodes exchange information via a multi-antenna amplify-and-forward relay node. This problem is non-convex and its optimal solution remains unsolved. Aiming to find an efficient way to solve the problem, we first decouple the primal problem into three tractable sub-problems, and then propose an iterative precoding design algorithm based on alternating optimization. The solution to each sub-problem is optimal and unique, thus the convergence of the iterative algorithm is guaranteed. Secondly, we propose a structured precoding design to lower the computational complexity. The proposed precoding structure is able to parallelize the channels in the multiple access (MAC) phase and broadcast (BC) phase. It thus reduces the precoding design to a simple power allocation problem. Lastly, for the special case where only a single data stream is transmitted from each source node, we present a source-antenna-selection (SAS) based precoding design algorithm. This algorithm selects only one antenna for transmission from each source and thus requires lower signalling overhead. Comprehensive simulation is conducted to evaluate the effectiveness of all the proposed precoding designs.Comment: 32 pages, 10 figure

    MIMO Relay Network with Precoding

    Get PDF
    We study the achievable rate in a MIMO, dual-hop, relay network where source and relay nodes may precode their input signals before transmission. Although an iterative expression for optimal precoders in this scenario is available in the literature, the corresponding achievable rate cannot be obtained analytically. We therefore propose approximate expressions for the precoding matrices and present semianalytical derivations of the achievable rate, which represent a significant progress toward closed-form expressions of this important metric. Beside being mathematically tractable, our expressions for the precoders provide data rates that are very close to the optimum and outperform existing approximate schemes. We apply our expressions to the analysis of the tradeoffs existing between achievable rate and nodes power consumption

    A Tutorial on the Optimization of Amplify-and-Forward MIMO Relay Systems

    Get PDF
    The remarkable promise of multiple-input multiple-output (MIMO) wireless channels has motivated an intense research activity to characterize the theoretical and practical issues associated with the design of transmit (source) and receive (destination) processing matrices under different operating conditions. This activity was primarily focused on point-to-point (single-hop) communications but more recently there has been an extensive work on two-hop or multi-hop settings in which single or multiple relays are used to deliver the information from the source to the destination. The aim of this tutorial is to provide an up-to-date overview of the fundamental results and practical implementation issues of designing amplify-and-forward MIMO relay systems
    • …
    corecore