3,991 research outputs found

    More Applications of the d-Neighbor Equivalence: Connectivity and Acyclicity Constraints

    Get PDF
    In this paper, we design a framework to obtain efficient algorithms for several problems with a global constraint (acyclicity or connectivity) such as Connected Dominating Set, Node Weighted Steiner Tree, Maximum Induced Tree, Longest Induced Path, and Feedback Vertex Set. For all these problems, we obtain 2^O(k)* n^O(1), 2^O(k log(k))* n^O(1), 2^O(k^2) * n^O(1) and n^O(k) time algorithms parameterized respectively by clique-width, Q-rank-width, rank-width and maximum induced matching width. Our approach simplifies and unifies the known algorithms for each of the parameters and match asymptotically also the running time of the best algorithms for basic NP-hard problems such as Vertex Cover and Dominating Set. Our framework is based on the d-neighbor equivalence defined in [Bui-Xuan, Telle and Vatshelle, TCS 2013]. The results we obtain highlight the importance and the generalizing power of this equivalence relation on width measures. We also prove that this equivalence relation could be useful for Max Cut: a W[1]-hard problem parameterized by clique-width. For this latter problem, we obtain n^O(k), n^O(k) and n^(2^O(k)) time algorithm parameterized by clique-width, Q-rank-width and rank-width

    The role of banks in the Brazilian Interbank Market: Does bank type matter?

    Get PDF
    This paper presents an empirical analysis of the Brazilian interbank network structure. The Brazilian interbank market clearly presents a topology that is compatible to the free-scale networks. This market is characterized by money centers, which have exposures to many banks and are the most important source of large amounts of lending. Therefore, they have important positions in the network taken into account by the minimal spanning tree and the power domination measures of the network. We also develop a methodology to compare di®erent banks and their relative importance in the network.
    corecore