27 research outputs found

    Interactive avatar control: Case studies on physics and performance based character animation

    Get PDF
    Master'sMASTER OF SCIENC

    Assessing Transferability from Simulation to Reality for Reinforcement Learning

    Full text link
    Learning robot control policies from physics simulations is of great interest to the robotics community as it may render the learning process faster, cheaper, and safer by alleviating the need for expensive real-world experiments. However, the direct transfer of learned behavior from simulation to reality is a major challenge. Optimizing a policy on a slightly faulty simulator can easily lead to the maximization of the `Simulation Optimization Bias` (SOB). In this case, the optimizer exploits modeling errors of the simulator such that the resulting behavior can potentially damage the robot. We tackle this challenge by applying domain randomization, i.e., randomizing the parameters of the physics simulations during learning. We propose an algorithm called Simulation-based Policy Optimization with Transferability Assessment (SPOTA) which uses an estimator of the SOB to formulate a stopping criterion for training. The introduced estimator quantifies the over-fitting to the set of domains experienced while training. Our experimental results on two different second order nonlinear systems show that the new simulation-based policy search algorithm is able to learn a control policy exclusively from a randomized simulator, which can be applied directly to real systems without any additional training

    A survey on human performance capture and animation

    Get PDF
    With the rapid development of computing technology, three-dimensional (3D) human body models and their dynamic motions are widely used in the digital entertainment industry. Human perfor- mance mainly involves human body shapes and motions. Key research problems include how to capture and analyze static geometric appearance and dynamic movement of human bodies, and how to simulate human body motions with physical e�ects. In this survey, according to main research directions of human body performance capture and animation, we summarize recent advances in key research topics, namely human body surface reconstruction, motion capture and synthesis, as well as physics-based motion sim- ulation, and further discuss future research problems and directions. We hope this will be helpful for readers to have a comprehensive understanding of human performance capture and animatio
    corecore