2,693 research outputs found

    A Survey on Load Balancing Algorithms for VM Placement in Cloud Computing

    Get PDF
    The emergence of cloud computing based on virtualization technologies brings huge opportunities to host virtual resource at low cost without the need of owning any infrastructure. Virtualization technologies enable users to acquire, configure and be charged on pay-per-use basis. However, Cloud data centers mostly comprise heterogeneous commodity servers hosting multiple virtual machines (VMs) with potential various specifications and fluctuating resource usages, which may cause imbalanced resource utilization within servers that may lead to performance degradation and service level agreements (SLAs) violations. To achieve efficient scheduling, these challenges should be addressed and solved by using load balancing strategies, which have been proved to be NP-hard problem. From multiple perspectives, this work identifies the challenges and analyzes existing algorithms for allocating VMs to PMs in infrastructure Clouds, especially focuses on load balancing. A detailed classification targeting load balancing algorithms for VM placement in cloud data centers is investigated and the surveyed algorithms are classified according to the classification. The goal of this paper is to provide a comprehensive and comparative understanding of existing literature and aid researchers by providing an insight for potential future enhancements.Comment: 22 Pages, 4 Figures, 4 Tables, in pres

    A Multi-Objective Load Balancing System for Cloud Environments

    Full text link
    © 2017 The British Computer Society. All rights reserved. Virtual machine (VM) live migration has been applied to system load balancing in cloud environments for the purpose of minimizing VM downtime and maximizing resource utilization. However, the migration process is both time-and cost-consuming as it requires the transfer of large size files or memory pages and consumes a huge amount of power and memory for the origin and destination physical machine (PM), especially for storage VM migration. This process also leads to VM downtime or slowdown. To deal with these shortcomings, we develop a Multi-objective Load Balancing (MO-LB) system that avoids VM migration and achieves system load balancing by transferring extra workload from a set of VMs allocated on an overloaded PM to other compatible VMs in the cluster with greater capacity. To reduce the time factor even more and optimize load balancing over a cloud cluster, MO-LB contains a CPU Usage Prediction (CUP) sub-system. The CUP not only predicts the performance of the VMs but also determines a set of appropriate VMs with the potential to execute the extra workload imposed on the VMs of an overloaded PM. We also design a Multi-Objective Task Scheduling optimization model using Particle Swarm Optimization to migrate the extra workload to the compatible VMs. The proposed method is evaluated using a VMware-vSphere-based private cloud in contrast to the VM migration technique applied by vMotion. The evaluation results show that the MO-LB system dramatically increases VM performance while reducing service response time, memory usage, job makespan, power consumption and the time taken for the load balancing process

    Climbing Up Cloud Nine: Performance Enhancement Techniques for Cloud Computing Environments

    Get PDF
    With the transformation of cloud computing technologies from an attractive trend to a business reality, the need is more pressing than ever for efficient cloud service management tools and techniques. As cloud technologies continue to mature, the service model, resource allocation methodologies, energy efficiency models and general service management schemes are not yet saturated. The burden of making this all tick perfectly falls on cloud providers. Surely, economy of scale revenues and leveraging existing infrastructure and giant workforce are there as positives, but it is far from straightforward operation from that point. Performance and service delivery will still depend on the providers’ algorithms and policies which affect all operational areas. With that in mind, this thesis tackles a set of the more critical challenges faced by cloud providers with the purpose of enhancing cloud service performance and saving on providers’ cost. This is done by exploring innovative resource allocation techniques and developing novel tools and methodologies in the context of cloud resource management, power efficiency, high availability and solution evaluation. Optimal and suboptimal solutions to the resource allocation problem in cloud data centers from both the computational and the network sides are proposed. Next, a deep dive into the energy efficiency challenge in cloud data centers is presented. Consolidation-based and non-consolidation-based solutions containing a novel dynamic virtual machine idleness prediction technique are proposed and evaluated. An investigation of the problem of simulating cloud environments follows. Available simulation solutions are comprehensively evaluated and a novel design framework for cloud simulators covering multiple variations of the problem is presented. Moreover, the challenge of evaluating cloud resource management solutions performance in terms of high availability is addressed. An extensive framework is introduced to design high availability-aware cloud simulators and a prominent cloud simulator (GreenCloud) is extended to implement it. Finally, real cloud application scenarios evaluation is demonstrated using the new tool. The primary argument made in this thesis is that the proposed resource allocation and simulation techniques can serve as basis for effective solutions that mitigate performance and cost challenges faced by cloud providers pertaining to resource utilization, energy efficiency, and client satisfaction

    Heuristic Algorithms for Energy and Performance Dynamic Optimization in Cloud Computing

    Get PDF
    Cloud computing becomes increasingly popular for hosting all kinds of applications not only due to their ability to support dynamic provisioning of virtualized resources to handle workload fluctuations but also because of the usage based on pricing. This results in the adoption of data centers which store, process and present the data in a seamless, efficient and easy way. Furthermore, it also consumes an enormous amount of electrical energy, then leads to high using cost and carbon dioxide emission. Therefore, we need a Green computing solution that can not only minimize the using costs and reduce the environment impact but also improve the performance. Dynamic consolidation of Virtual Machines (VMs), using live migration of the VMs and switching idle servers to sleep mode or shutdown, optimizes the energy consumption. We propose an adaptive underloading detection method of hosts, VMs migration selecting method and heuristic algorithm for dynamic consolidation of VMs based on the analysis of the historical data. Through extensive simulation based on random data and real workload data, we show that our method and algorithm observably reduce energy consumption and allow the system to meet the Service Level Agreements (SLAs)
    • …
    corecore