1,482 research outputs found

    Assessment of VR Technology and its Applications to Engineering Problems

    Get PDF
    Virtual reality applications are making valuable contributions to the field of product realization. This paper presents an assessment of the hardware and software capabilities of VR technology needed to support a meaningful integration of VR applications in the product life cycle analysis. Several examples of VR applications for the various stages of the product life cycle engineering are presented as case studies. These case studies describe research results, fielded systems, technical issues, and implementation issues in the areas of virtual design, virtual manufacturing, virtual assembly, engineering analysis, visualization of analysis results, and collaborative virtual environments. Current issues and problems related to the creation, use, and implementation of virtual environments for engineering design, analysis, and manufacturing are also discussed

    3D Scene Geometry Estimation from 360^\circ Imagery: A Survey

    Full text link
    This paper provides a comprehensive survey on pioneer and state-of-the-art 3D scene geometry estimation methodologies based on single, two, or multiple images captured under the omnidirectional optics. We first revisit the basic concepts of the spherical camera model, and review the most common acquisition technologies and representation formats suitable for omnidirectional (also called 360^\circ, spherical or panoramic) images and videos. We then survey monocular layout and depth inference approaches, highlighting the recent advances in learning-based solutions suited for spherical data. The classical stereo matching is then revised on the spherical domain, where methodologies for detecting and describing sparse and dense features become crucial. The stereo matching concepts are then extrapolated for multiple view camera setups, categorizing them among light fields, multi-view stereo, and structure from motion (or visual simultaneous localization and mapping). We also compile and discuss commonly adopted datasets and figures of merit indicated for each purpose and list recent results for completeness. We conclude this paper by pointing out current and future trends.Comment: Published in ACM Computing Survey

    From Capture to Display: A Survey on Volumetric Video

    Full text link
    Volumetric video, which offers immersive viewing experiences, is gaining increasing prominence. With its six degrees of freedom, it provides viewers with greater immersion and interactivity compared to traditional videos. Despite their potential, volumetric video services poses significant challenges. This survey conducts a comprehensive review of the existing literature on volumetric video. We firstly provide a general framework of volumetric video services, followed by a discussion on prerequisites for volumetric video, encompassing representations, open datasets, and quality assessment metrics. Then we delve into the current methodologies for each stage of the volumetric video service pipeline, detailing capturing, compression, transmission, rendering, and display techniques. Lastly, we explore various applications enabled by this pioneering technology and we present an array of research challenges and opportunities in the domain of volumetric video services. This survey aspires to provide a holistic understanding of this burgeoning field and shed light on potential future research trajectories, aiming to bring the vision of volumetric video to fruition.Comment: Submitte

    Representation and coding of 3D video data

    Get PDF
    Livrable D4.1 du projet ANR PERSEECe rapport a été réalisé dans le cadre du projet ANR PERSEE (n° ANR-09-BLAN-0170). Exactement il correspond au livrable D4.1 du projet

    UcoSLAM: Simultaneous Localization and Mapping by Fusion of KeyPoints and Squared Planar Markers

    Full text link
    This paper proposes a novel approach for Simultaneous Localization and Mapping by fusing natural and artificial landmarks. Most of the SLAM approaches use natural landmarks (such as keypoints). However, they are unstable over time, repetitive in many cases or insufficient for a robust tracking (e.g. in indoor buildings). On the other hand, other approaches have employed artificial landmarks (such as squared fiducial markers) placed in the environment to help tracking and relocalization. We propose a method that integrates both approaches in order to achieve long-term robust tracking in many scenarios. Our method has been compared to the start-of-the-art methods ORB-SLAM2 and LDSO in the public dataset Kitti, Euroc-MAV, TUM and SPM, obtaining better precision, robustness and speed. Our tests also show that the combination of markers and keypoints achieves better accuracy than each one of them independently.Comment: Paper submitted to Pattern Recognitio

    マルチタスク学習を用いたシーン理解とデータ拡張による複合現実感の向上

    Get PDF
    早大学位記番号:新9140早稲田大

    Enhancing Perception and Immersion in Pre-Captured Environments through Learning-Based Eye Height Adaptation

    Full text link
    Pre-captured immersive environments using omnidirectional cameras provide a wide range of virtual reality applications. Previous research has shown that manipulating the eye height in egocentric virtual environments can significantly affect distance perception and immersion. However, the influence of eye height in pre-captured real environments has received less attention due to the difficulty of altering the perspective after finishing the capture process. To explore this influence, we first propose a pilot study that captures real environments with multiple eye heights and asks participants to judge the egocentric distances and immersion. If a significant influence is confirmed, an effective image-based approach to adapt pre-captured real-world environments to the user's eye height would be desirable. Motivated by the study, we propose a learning-based approach for synthesizing novel views for omnidirectional images with altered eye heights. This approach employs a multitask architecture that learns depth and semantic segmentation in two formats, and generates high-quality depth and semantic segmentation to facilitate the inpainting stage. With the improved omnidirectional-aware layered depth image, our approach synthesizes natural and realistic visuals for eye height adaptation. Quantitative and qualitative evaluation shows favorable results against state-of-the-art methods, and an extensive user study verifies improved perception and immersion for pre-captured real-world environments.Comment: 10 pages, 13 figures, 3 tables, submitted to ISMAR 202

    A Survey of Multimedia Technologies and Robust Algorithms

    Full text link
    Multimedia technologies are now more practical and deployable in real life, and the algorithms are widely used in various researching areas such as deep learning, signal processing, haptics, computer vision, robotics, and medical multimedia processing. This survey provides an overview of multimedia technologies and robust algorithms in multimedia data processing, medical multimedia processing, human facial expression tracking and pose recognition, and multimedia in education and training. This survey will also analyze and propose a future research direction based on the overview of current robust algorithms and multimedia technologies. We want to thank the research and previous work done by the Multimedia Research Centre (MRC), the University of Alberta, which is the inspiration and starting point for future research.Comment: arXiv admin note: text overlap with arXiv:2010.1296
    corecore