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Chapter 1

Introduction

1.1 Background

Mixed reality as a broad concept describes a process of blending the physical world
and the digital environment computed and rendered in real-time. This new hybrid
reality that extends both ways from a completely virtual world and our perceived
reality enables numerous potential interactions and applications. When emphasizing
more on the virtual environment, mixed reality allows users to enter an entirely dif-
ferent environment with intuitive interaction. Such unique strength over traditional
user interface sparks a wide range of studies including human-computer interaction,
psychology, cognition, etc., and inspires plentiful practical applications in training,
entertainment, education, and medical [1]. When the focus is put on the real world
instead of complete disconnection from reality, mixed reality shows its capability to
aid real-world tasks effectively and efficiently by presenting computer-generated visu-
alizations as an overlay. For instance, Google Translate uses augmented reality tech-
nology to overlay the translated scripts onto the physical texts in real-time through
the camera-equipped hand-held device [2]. With the ability to seamlessly superimpose
virtual objects onto user’s observations, it motivates abundant research topics such
as haptics, collaboration, and robotics, and is broadly adapted into manufacturing,
design, and modeling.

To seamlessly merge the digital and the real world, correctly understanding both
the virtual scene and the physical environment is crucial to every mixed reality ap-
plication. Irrelevant to the specific function of mixed reality applications, the entire
process often incorporates the following steps, which are demonstrated in Figure 1.3.
After sensors and imaging devices are successfully calibrated, systems execute multiple
computer vision tasks to establish and maintain a correct understanding of the scene
for the later augmentation process. The subsequent step is mapping and register-
ing the environment, which enables the device to establish a reliable correspondence
between the virtual environment and the real world. This is usually done with vision-
based methods such as using fiducial markers or recognizing features of the physical
surroundings [3]. During the usage of each application, the system receives continu-
ous real-time inputs with different modalities (e. g. motion controllers or ray-traced
touch input with a touchscreen [4]) and updates the stored correspondence iteratively.
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After the application finished processing the information with renders being available,
the final step requires the system to understand the mapping between virtuality and
reality to correctly visualize the result and superimpose it onto physical objects.

When compared to the first barebone and bulky mixed reality device designed in
1994 [5], modern mixed reality has been experiencing dramatically increased popular-
ity with more affordable hardware and polished software in recent years, owing to the
progress in computer graphics, display technology, input systems, cloud computing,
and other research fields. Nevertheless, for sophisticated applications under diverse
conditions, providing an immersive mixed reality experience is still challenging. One
crucial issue is the difficulty of accurately and instantaneously understanding the com-
plex relationship between the virtual environment and the physical world. As we can
observe that throughout a typical mixed reality process, correctly understanding both
the virtual scene and the physical environment is of great importance.

Figure 1.1: Different steps to process mixed reality.

To satisfy the requirements of real-time efficiency and highly accurate efficacy,
scene understanding, as a fundamental component of mixed reality technologies, has
seen great progress over recent years with more advanced deep learning algorithms.
Among a wide range of topics in scene understanding, the following ones are frequently
involved in the multiple steps of a mixed reality application that are marked in blue
(Figure 1.3). Object recognition enables the system to identify a physical object in
the real world with high accuracy, facilitating a museum guide application [6] that
recognizes the artworks with the camera and provides the user with related informa-
tion to aid the tour. Semantic segmentation provides each pixel with correct labels,
aiding collision detection [7] in the mixed reality environment. Depth prediction helps
understand the scale and distance of a physical object, enabling occlusion calculations
to correctly render the virtual augmentation for an immersive experience [8].

While traditional deep learning-based scene understanding algorithms that accom-
plish respective objectives of object recognition, semantic segmentation, and depth es-
timation in isolation have shown great performance, mixed reality applications often
involve multi-modal data and several pipelines running simultaneously in real-time.
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For instance, tracking and predicting the displacement of the controller using acceler-
ation and visual data, while detecting nearby dynamic objects with visual and depth
information, in addition to localizing and mapping the main device in the physical en-
vironment, are all carried out in real-time. Motivated by biology that human tackles
similar tasks with shared knowledge and experience, multi-task learning has gained
growing attention in the past few years. With the ability to learn and solve multiple
tasks concurrently, multi-task learning is well-suited for mixed reality applications.
However, improving mixed reality with multi-task scene understanding algorithms is
a topic that is rarely investigated.

Multi-task learning excels in improving the generalization and the accuracy of
each task, optimizing the overall model size and inference time, and alleviating the
scarcity problem of training data. A multi-task learning model receives different do-
mains of input and aims to learn multiple objectives simultaneously. First, by sharing
knowledge across relevant tasks, the model usually learns a more robust and accu-
rate representation of the training data. This is achieved through different training
schemes and network architectures. For instance, hard parameter sharing incorporates
sharing several hidden layers across every task to capture a better representation of
features and have several branched layers at the end to yield respective outputs for
each task. One task eavesdropping on another can let the model leverage the features
advised by different tasks, which are otherwise hard to find when learning individually.
As a consequence, each task shows better generalization with a lower risk of overfit-
ting. When tasks are related and similar, multi-task models usually show improved
performance. Second, due to inherent network design with shared layers, a portion
of calculation and corresponding memory requirements can be greatly reduced, along
with optimized training and inference time when compared to single-task learning.
Third, multi-tasking learning can aggregate the training data across different tasks
as implicit data augmentation, alleviating the scarcity problem of annotated data for
some applications. By passing the learned knowledge from different supervisory sig-
nals to a task with scarce samples, multi-task learning can utilize the information to
guide the training process and reduce the necessity of laborious manual annotation.

Despite the great capabilities of multi-task learning, multi-modal annotated databases
are still indispensable for supervised learning approaches. While there are abundant
samples for traditional computer vision tasks such as object recognition, in the context
of scene understanding in mixed reality, many tasks suffer from low-quality databases.
For instance, while hand posture samples are usually captured and annotated using a
nearby webcam or Kinect, hand-object interactions in mixed reality are often viewed
with an egocentric perspective. Moreover, captured photos that are intended for
mixed reality usage are usually stored with an entirely different projection, rendering
traditional perspective training databases less effective. As a result, to take advantage
of multi-tasking in mixed reality applications, an effective data augmentation method
is less studied but very much desired.
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1.2 Research Scope and Objectives

To achieve immersive mixed reality with improved realism, a more effective and effi-
cient understanding of both the virtual environment and the real world is essential.
In this thesis, we aim to investigate the great potential of multi-task learning-based
scene understanding algorithms for mixed reality applications. We categorize multi-
task learning into three different paradigms with respective strengths and advisable
applications in mixed reality: (1) multi-output regression, (2) multi-view learning,
and (3) multi-input multi-output learning. Fig. 1.2 overviews the structural differ-
ence between them. We will focus on several topics of scene understanding that are
particularly crucial in mixed reality: object recognition, semantic segmentation, and
depth prediction. It is well-known that labeled training data are crucial for learning-
based approaches, and great performance high-capacity deep learning models need
an adequate number of annotated samples. We aim to propose multi-task learning
algorithms to solve persistent problems in mixed reality by combining different data
augmentation techniques to obtain high-quality large-scale databases that are cur-
rently scarce or not available.

Figure 1.2: Different multi-task learning paradigms.

In this thesis, we follow the order of different spatial scopes and choose three
unique challenges in mixed reality to demonstrate the capability of each multi-task
learning paradigm. We start from a smaller scope in mixed reality by trying to under-
stand egocentric hand-object interactions. Next, we aim to understand a larger scope:
estimating the correct depth of the foreground objects in a mixed reality environment.
Finally, we further zoom out to observe the global context and aim to comprehend
the entire 360-degree scene with depth prediction. On the local scope, we design
a multi-output regression network that receives single domain input and yield mul-
tiple domain output to showcase the better capability and efficiency of multi-task
learning in mixed reality. Due to scarce egocentric training samples and strong mo-
tion, previous semantic segmentation methods yield sub-optimal results in interactive
applications. We demonstrate that learning different tasks in parallel and yielding
predictions at the same time with a multi-output regression network (Fig. 1.2(a)) can
help achieve higher accuracy and real-time efficiency.

On the regional scope, we design a multi-view learning network that receives mul-
tiple domain inputs and yields single domain outputs to achieve higher accuracy with
multi-task learning. The network aims to model diverse views with different features
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with a single function to achieve improvements in performance for the same task.
Combining the equirectangular view which is consistent yet has distortion with the
cubemap view which has no distortion but is inconsistent at boundaries, the proposed
multi-view learning network outperforms a similar multi-output regression network
and verifies the capability of multi-view learning for mixed reality applications of this
scope.

On the global scope, we propose to achieve a good understanding of the entire
scene in mixed reality through depth estimation. Since multi-view learning showed
insufficient ability to comprehend the global information in our experiments, we de-
sign a multi-input multi-output learning architecture that instructs different views to
respectively accomplish depth estimation and semantic segmentation. With a fusion
scheme that shares information with the other branch, we successfully demonstrate
the strength of multi-task learning in challenging mixed reality problems.

Figure 1.3: Understanding local, regional, and global scope of mixed
reality scenes.

1.3 Thesis Organization

In this thesis, we follow the order of different spatial scopes to understand scenes in
mixed reality. After a thorough review of the background and literature on mixed
reality and relevant multi-task learning scene understanding approaches in Chapter
2, we start from a smaller scale of understanding users’ hand-object interactions to
resolve occlusions. We then focus on the foreground objects of mixed reality scenes.
We choose humans as an example to demonstrate the capabilities of predicting depth
and semantic segmentation with different network designs. Later, we propose to
comprehend the global scene through depth prediction and showcase its usage in
mixed reality. Finally, we explore employing existing scene understanding algorithms
for practical mixed reality applications. In the remainder of the thesis, we will discuss
limitations and give potential directions for future computer vision for mixed reality.

Background (Chapter 2). In Chapter 2, we first review the definition and impor-
tant applications of state-of-the-art mixed reality. We then continue to review the
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relevant scene understanding topics including object recognition, semantic segmenta-
tion, and depth prediction. We finally examine the literature on multi-task learning
and data augmentation methods.

Grasping the Local: Solving Hand-object Occlusion in Mixed Reality (Chapter 3).
The hand is one of the key components in mixed reality, and hand-object interactions
are critical to a wide range of MR applications such as surgery simulations. However,
their practicality and immersive experiences are severely limited by occlusions. In
Chapter 3, we first revisit existing occlusion solutions, followed by explaining the
proposed RGBD database generated with data augmentation, and then a novel joint
learning process to predict hand postures and masks. We finally present our novel
two-step approach to resolving the occlusions in mixed reality with implementation
details, evaluations, and a user study. This research can be applied to egocentric mixed
reality applications that include hand-object interactions such as apparatus-involved
training.

Observing the Regional: Foreground-aware 360◦ Depth Prediction (Chapter 4).
Although the ability to predict depth from a single 360-degree image can benefit
plentiful applications, existing approaches produce sub-optimal results for foreground
objects. In this chapter, we propose to augment databases with realistic foregrounds
with an image-based approach and design a novel auxiliary deep neural network to
predict depth and semantic segmentation simultaneously. We further design a bi-
projection-based network to improve the capability of understanding the foreground
object. We demonstrate the system using humans as the foreground due to its com-
plexity and contextual importance and show consistent and accurate local estimations
compared with state-of-the-arts.

Comprehending the Global: 360◦ Depth Prediction in the Wild (Chapter 5). Al-
though data-driven learning-based methods demonstrate significant potential in un-
derstanding the entirety of 360-degree images, scarce training data and ineffective
360-degree estimation algorithms are still two key limitations hindering accurate esti-
mation across diverse domains. In this chapter, we first establish a large-scale database
by exploring the use of a plenteous source of data, 360-degree videos from the inter-
net, using a test-time training method. We then propose an end-to-end two-branch
multi-task learning network, SegFuse, that mimics the human eye to effectively learn
from the dataset and estimate high-quality depth maps from diverse monocular RGB
images. We showcase that our method has a great understanding of the global mixed
reality scene under arbitrary conditions.

Employing Scene Understanding in Immersive Mixed Reality (Chapter 6). With
the established understanding of different scales of scenes, we explore the practical
applications of mixed reality in Chapter 6. We propose two applications: editing
foreground objects of interest in pre-captured 360-degree videos and consistent artis-
tic stylization for pre-captured videos. We expect this application-focused chapter
can shed more light on more practical employments of newer scene understanding
algorithms in the modern virtual/augmented reality era.
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Conclusion (Chapter 7). In Chapter 7, we start with a summary of the work. We
then discuss the limitations of current scene understanding in upcoming mixed reality,
and try to explore some promising directions for alike future research that focus on
solving the computer vision aspect of mixed reality technologies.
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Chapter 2

Literature Review

In this chapter, we present the necessary literature and background for the overall
goal of this thesis, improving the immersive mixed reality experience with multi-task
learning-based scene understanding algorithms. First, we review the broad concepts
and theoretical background related to mixed reality technology. Considering that
convincing visuals require coherent registrations between the physical and the vir-
tual environment, we then briefly discuss the significance of key scene understanding
abilities in typical mixed reality processes. Next, we review the background and ca-
pabilities of multi-tasking learning in effective and efficient scene understanding. To
facilitate an effective learning process, we also briefly describe popular data augmen-
tation approaches that are relevant to this research.

2.1 Mixed Reality

The term mixed reality was firstly introduced in 1994, defines as the blended reality
that extends from the extremes of a completely virtual environment rendered within
computers and the actual reality the users stay in [5]. Mixed reality is realized through
constructing a three-dimensional virtual environment and merging the virtual world
with the physical environment. Allowing the user to interact with the co-existed phys-
ical and digital environments intuitively, greatly expands the ability of human beings
to simulate and understand the world. With more matured mixed reality technol-
ogy, a wide range of industrial applications such as entertainment [9], product design
and modeling [10], military training [11], education [12], have been implemented, and
cross-field research topics including human-computer interaction [13], computer vision
[8], cognition and emotion [14], medical and healthcare [15] are gaining more attention
in recent years. Figure 2.1 showcases an increasing amount of industrial interest since
2004, while Figure 2.2 illustrates the steady growth of academic attention in related
research fields of mixed reality.

To further clarify the scope of this research, we utilize the widely accepted defini-
tion of the mixed reality continuum to briefly explain the different research problems
under mixed reality. As shown in Figure 2.3, the traditional graphical user interface
that is presented through a flat-screen is defined at the right end of the spectrum as
complete virtuality, and the real-world environment without any computer-generated
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Figure 2.1: The search interest of mixed reality related keywords.
(Source: Google Trends [16], from Jan. 2004 to Dec. 2021.)

Figure 2.2: The statistic of publications with mixed reality related
topics. (Source: Scopus [17], from Jan. 2004 to Dec. 2021.)

elements is defined as reality. On the one hand, when an increasing number of physi-
cal elements are incorporated into the three-dimensional virtual environment, we will
meet with virtual reality on the spectrum. Virtual reality describes a predominantly
virtual environment with a rather small number of physical elements, such as physical
objects and movements of the user. On the other hand, when we augment the visual
of the real environment with additional visualization of virtual objects, we meet with
augmented reality on the other side of the spectrum. However, some research top-
ics, such as rendering pre-captured real-world environments in virtual worlds [13] and
projecting virtual environments to real screens surrounding the user [18], are more dif-
ficult to determine whether they belong to the virtual reality or the augmented reality
domain, therefore sometimes researchers use mixed reality as a broad and inclusive
term to cover the entirety of blended physical and virtual environments.

To achieve an immersive mixed reality experience, two elements are crucial: (1)
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Figure 2.3: The relationship between mixed reality, virtual reality,
and augmented reality.

accurate understanding of the scene, as an input stage, for correct geometric registra-
tion and seamless fusion of the virtual environment and real-world counterparts; (2)
real-time visualization and interaction, as an output stage, for a natural and respon-
sive experience. These are realized through different hardware and software for virtual
reality and augmented reality, and each has its practical applications in a variety of
disciplines. Therefore, I briefly review them separately in the following sections.

2.1.1 Virtual Reality

The introduction of the concept of virtual reality can be dated back to 1986 [19],
which aimed to create a synthetic environment created by computers and achieve the
illusion for the user that he/she is located in a different reality. While multi-sensory
signals such as haptic feedback and olfactory stimuli [20] are being studied for a more
immersive sense of presence, this illusion is predominantly achieved through visual
cues.

Applications. With the advance in computer graphics and computational power,
modern virtual reality can render objects and environments with an excellent degree of
realism. As a result, virtual reality has gained popularity over the recent years in both
industry and academia, ranging in a great variety of disciplines. There are abundant
cases of adopting virtual reality in educational settings to enhance the learning process.
For instance, employing virtual reality in medical education can make the process of
learning human anatomy effective and enjoyable [15]. It is also widely adopted in
training processes due to its proven potential for skill acquirement, such as learning to
drive [21], performing surgery [15], and refining performance in sports [22]. Recently,
one of the most prevalent uses of virtual reality is entertainment. With an increasing
number of polished software and affordable hardware being released, virtual reality
has seen a great increase in sales and acceptance over the past five years [23].

Hardware. In most cases, virtual reality creates a completely enclosed environ-
ment through a head-mounted display. Being one of the most important factors for
depth perception and immersive experience, stereoscopic vision is achieved through
two identical high-resolution screens positioned right in front of each eye. To simulate
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the realistic visual feedback according to the user’s movements, real-time tracking of
the headset is achieved through acceleration data and visual inputs gathered by in-
built gyroscopes and vision-based algorithms. To improve realism, display resolution,
field-of-view, and display refresh frequency are all key factors. The recent commercial
success of Oculus Quest and Valve Index [23] attributes to their powerful yet compact
hardware.

Media creation in virtual reality, including 360-degree photography and videos,
has also gained great attention in recent years. With affordable commercial omnidi-
rectional cameras being researched and developed, capturing omnidirectional media
and playback with virtual reality devices can provide unparalleled immersion when
compared to traditional media formats [13]. At the same time, online video sharing
platforms such as YouTube also readily promote the progress of omnidirectional con-
tents with efficient compression and transmission algorithms [24], making real-time
online streaming possible.

Limitations. Although great progress has been made in theory, technology, and
application, one of the major scientific issues of virtual reality is still real-time compu-
tation and high-fidelity render of both the virtual and the physical world. Compared
to traditional two-dimensional displays, a close distance between the screens in the
head-mounted displays and the eyes of the user means that artifacts and delays would
inevitably disrupt the immersion. Even worse, the unsynchronized visual feedback
shown at a sub-optimal frequency will result in disorientation, severe fatigue, or even
severe discomfort. Currently, the industrial standard for virtual reality fidelity is usu-
ally 90 frames per second with a per-eye resolution of 1440 by 1600 [23]. However,
a rather low field of view around 100 degrees is still limiting the immersion of the
current generation of virtual reality. Moreover, to simulate and render a virtual en-
vironment with a combination of high refresh rates and large amounts of pixels, the
computational cost usually demands powerful equipment, further limiting the progress
of virtual reality. As a result, the efficiency of the algorithm is highly desired and has
become an important criterion for virtual reality studies and applications.

2.1.2 Augmented Reality

To alleviate such limitations, augmented reality greatly reduces the amounts of virtual
objects that are required to be simulated and rendered in real-time and lowers the
heavy workload of three-dimensional modeling. The concept of augmented reality
was firstly introduced in 1992, defined as extending the spatial human perception
of the world in three dimensions with computer-generated objects [25]. Instead of
computing every detail for the entirety of the surroundings to completely immerse
the user, it relies on compositing the digital visualizations onto the reality through
accurate mapping and registration processes. The two key features of augmented
reality are accurate correspondence between the physical and the virtual objects, and
real-time interactions between the user and the blended reality.
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Figure 2.4: Examples of augmented reality applications in different
disciplines [9] [12] [10].

Applications. As a result, the usage of augmented reality dramatically diverges
from virtual reality: by enhancing the sensory signals of the real environment with
virtual counterparts, the goal of augmented reality is primarily to support task com-
pletion by providing a more natural integration of digital contents and the real-world
environment. In visual design and planning, computer-generated three-dimensional
can be superimposed onto the view of the real world with see-through devices before
the actual plan is carried out. For instance, in Figure 2.4 (a), augmented reality allows
users to preview the results before purchasing a piece of furniture [10]. In healthcare
and medical training, augmented reality is widely adopted to provide crucial contexts
spatially close to the patient and training medical professionals [15]. Figure 2.4 (b)
provides an example of an augmented reality application to seamlessly acquire the for-
eign texts and display the translation in place of the original texts [12], which was a
laborious and offline task in the past. In other areas such as entertainment, augmented
reality has also seen considerable commercial and industrial successes. For instance,
in live broadcasting of sports events and weather forecasts, overlaying trajectories of
graphics symbols and intuitive effects onto the traditional streaming feed can provide
an improved viewing experience. In Figure 2.4 (c), we showcase a very popular enter-
tainment application that has grabbed a considerable amount of industrial attention
to augmented reality technology when released [9]. Details of interesting applications
across plentiful disciplines including collaboration, social interaction, robotics, and
psychology will be omitted for brevity.

Hardware. To correctly merge the virtual environment with the physical world
and provide a natural and faithful visualization of both worlds, augmented reality
hardware functions as the gateway between the human body and the blended real-
ity. The core components are (1) sensors, for taking input, tracking the physical
objects, and registering the environment in real-time, and (2) displays, for rendering
the composition with convincing quality. The first fully functional optical see-through
head-mounted display was built by Sutherland in 1968 [26] for proof-of-concept aug-
mented reality applications. Although being bulky and barebone with limited func-
tionality, the essence of this mechanical contraption is still receiving the movement
of the user’s perspective as an input, and rendering a three-dimensional wireframe
that corresponds to the correct perspective (please refer to Figure 2.5). Since then,
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researchers have been keeping improving both the registration algorithms and display
technology through computer vision and computer graphics.

Figure 2.5: An early optical see-through device [26] running a proof-
of-concept augmented reality application.

Modern augmented reality devices can be divided into two different categories: (1)
optical see-through head-mounted displays and (2) video see-through head-mounted
displays. Optical see-through devices allow users to directly view the real environ-
ment through transparent displays, such as a pair of glasses, with additional digital
information being reflected or projected onto users’ view. With a less demanding ren-
dering workload and lower power consumption, optical see-through devices have the
benefit of more compact sizes and a more natural view of the real world. However,
while the process of addition is streamlined, hiding physical objects is an extremely
challenging task for this type of augmented reality. On the other hand, Video see-
through devices utilize single or multiple cameras to capture external images, then
compute a convincing output with virtual objects, and finally display the synthesized
composition in front of users’ eyes in a similar fashion to virtual reality. While it
is easy to manipulate the entirety of visual information, video see-through devices
require heavier computations, better cameras, and high-fidelity displays. Although
handheld mobile devices satisfy the criteria and see popular adoption in augmented
reality applications, lack of depth perception and limited interaction greatly limit the
immersion of flat screen-based augmented reality.

Limitations. Regardless of the type of device being used, the most crucial and
fundamental capability of augmented reality is to accurately understand the physical
environment and establish the mapping between the computer-generated environment
and the reality in real-time. To derive the correct displacement of physical objects
that is robust to camera poses and external conditions is a challenging task. Recent
progress made in computer vision research, especially in visual odometry, allows ap-
plications to acquire the three-dimensional models and understand the lighting of the
real world [27]. However, existing solutions still require specific setups sensors such
as LiDAR and depth sensors to achieve a robust experience. With limited applica-
tion scope and costly and bulky hardware, more work are remained to be done to
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further push augmented reality towards higher realism, better immersion, and wider
adoption.

2.1.3 Geometric Registration

In this subsection, I will present the main concepts and approaches for establishing a
consistent spatial correspondence between the virtual environment and the real world.
This process is illustrated in Figure 2.6.

Figure 2.6: Augmented reality registers the geometric correspon-
dence between the virtual and the real environment through captured
images, and then augment virtual objects with correct displacement.

Within the physical environment, augmented reality systems first use a real cam-
era Oreal to capture a series of images I = {Ik, k = 1, 2, 3. . . , n} of the real world
given that the real camera is centered at O in real coordinate, and only pinhole cam-
era model is considered for simplicity. In this sense, we view the captured image I as
a projection R3 →R2 with a fixed perspective transformation T given the consistent
camera intrinsic. After the perspective transformation T is determined, the system
calculates the displacement of a virtual camera Ovirtual in a virtual world coordinate,
that when projecting the virtual environment in a similar fashion with transformation
T , the displacement of a projected feature point X̂i in squared difference D is mini-
mized to make sure that the feature point Xi in the real-world coordinate is as close
as possible to X̂i. After iterative tracking of feature points across multiple frames, the
augmented reality system can determine a more confident correspondence between
the virtual and the real environment, so that it can composite digital contents onto
the image I, as shown in Figure 2.6 (c).

D =
∑
i

(X̂i −MXi)
2, (2.1)

In the past, fiducial markers are widely adopted in augmented reality systems
[28]. When there is no object with known geometry present in the scene, fiducial
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markers can provide robust features for the tracking process. However, marker-based
systems require the easily identifiable and always visible placement of the markers
in the scene, and this greatly limits the practicality of augmented reality applica-
tions. In recent years, natural feature-based registration can achieve localization of
the camera by extracting and tracking two- or three-dimensional features in the scene
like edge detection. In the field of monocular camera-based three-dimensional geo-
metric registration, Davison [29] propose to use simultaneous localization and map
construction algorithms to achieve real-time update of the camera pose in an indoor
environment using a hand-waved camera. Later, they refine the process by simulta-
neously modeling the camera pose and features as a probabilistic state [30]. However,
the computational cost of simultaneous localization and map construction is extremely
high with a O(N3) (N is the number of features), greatly limiting the application and
performance of augmented reality applications using this method. Later, Klein and
Murray [31] propose to use parallel tracking and mapping algorithms to separate the
process of feature tracking and map construction. After the initialization is done, the
system tracks feature points with the optical flow with keyframes. Dense tracking
and mapping-based methods [32] calculate depth based on image pairs with narrow
baselines instead of matching the in-scene features. By minimizing the difference in
depth of each point in relation to the reference keyframes, the system can achieve an
accurate estimation of the camera pose. Recent simultaneous localization and map
construction methods detect the structural changes of the environment and update the
keyframes accordingly to achieve some tolerance against dynamic environments [33].
While state-of-the-art simultaneous localization and map construction approaches can
achieve robust tracking to construct an accurate mapping, the major weakness is still
modeling dynamic scenes with strong motions. Furthermore, when keyframes have
larger baselines, the computational cost of alike methods dramatically increases and
disqualifies for augmented reality applications. Therefore, instead of designing entirely
markerless solutions to arbitrary scenes, some methods focus on certain targets to en-
sure a better performance. By using facial landmarks and matching with a general
three-dimensional model, this type of approach estimates the camera extrinsic and
determines the transformation for geometric registration [34]. The study in Chapter
3 uses a similar idea to effectively and efficiently register the geometry of the scene
through hand pose estimation.

Compared to monocular camera-based registration, stereo-vision-based methods
and depth-based methods all show great potential in augmented reality applications.
Both methods are capable of achieving higher accuracy due to their accurate tracking
of three-dimensional feature points. For instance, Zhu et al. [35] use image pairs
of forward and backward observations to construct a landmark database to achieve
reduced long-term error. KinectFusion [36] matches the depth of each pixel to re-
construct small-scale indoor scenes with greatly improved robustness. While it is a
promising direction to utilize multi-modal information to refine the registration pro-
cess, however, current commercial depth sensors usually suffer from noises and a short
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effective range, limiting the usability in augmented reality applications. In the next
sections, I will discuss recent advance in learning-based scene understanding that can
help with more accurate and efficient registration, which possess great potential in
providing an immersive mixed reality experience.

2.2 Scene Understanding

Although state-of-the-art augmented reality systems have shown great potential in
geometric registration, the process of visualizing the virtual objects with a high degree
of realism still requires understanding multiple knowledge of the physical environment.
For instance, without understanding the boundaries of different objects, the depth
relation between foreground and background, or the correct lighting of the scene,
there are a variety of challenges that need to be solved for full immersion. As videos
and images captured by the camera are still two-dimensional, without fully functional
reconstruction, virtual objects can hardly interact with the physical world or the user
in an intuitive way. To circumvent the heavy computational cost of reconstruction and
achieve real-time performance, recent deep-learning-based scene understanding greatly
helps solve mixed reality problems. In this section, I will first briefly overview the most
prominent deep neural networks that are frequently used for scene understanding
tasks, then I will go over three topics, object recognition, semantic segmentation, and
depth estimation, as they are crucial components of my following research presented
in Chapter 3, 4, 5, and 6.

Figure 2.7: A typical architecture of convolutional neural networks
with an example feature learning process.

Convolutional neural networks. Convolutional neural networks are one of the
most popular choices for computer vision tasks for their ability to capture image fea-
tures by simulating the process of the biological human brain [37]. The human brain
starts from the sensory signal of individual pixels, followed by preliminary process-
ing to find edges and features as the function of certain cells of the cerebral cortex,
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finally further abstracting the information to obtain a high-level understanding. A
typical structure of convolutional neural networks is shown in Figure 2.7. While the
features extracted at the bottom layers look similar to each other, more distinct fea-
tures are extracted in higher layers, finally, different high-level features are combined
at the top layers, enabling accurate high-level understanding. Convolutional neural
networks achieve high accuracy of scene understanding when compared to traditional
algorithms.

Convolutional neural networks often consist of three different components, the
convolutional layer, which is responsible for extracting local features from the input
image, pooling layers, which reduce the dimensionality to significantly reduce the
number of parameters with statistical information, and the fully connected layer,
which enables output of the desired result. Some of the most popular architectures
include VGGNet [38], AlexNet [39], DenseNet [40], and GoogLeNet [41].

Encoder-decoder networks. Encoder-decoder architecture is a very popular
network design in deep learning. An encoder f(x) usually consists of a deep neural
network (e.g. fully convolutional networks, convolutional neural networks, recurrent
neural networks, etc.) that receives input and encodes the information into latent
features v = f(x) with reduced dimensions. Such latent features function to retain
meaningful hidden semantic information of the input for the process of regressing the
output. The decoder g(v) also consists of a type of neural network, usually having the
exact or similar structure as the encoder but processes feature in the opposite direc-
tion. Taking latent vectors as input, the decoder learns to map the feature from the
input domain to the same domain as the desired output x̂ = g(v). By minimizing the
distance of x̂ with the output for supervised learning, an encoder-decoder architecture
can effectively learn to solve image-to-image translation problems. The architecture is
explained in Figure 2.8. Popular applications of this type of network designs include
semantic segmentation [8], super-resolution [42], translation [43], etc.

Figure 2.8: The architecture of encoder-decoder networks.

Generative adversarial networks. Generative adversarial networks [44] are a
group of deep learning networks that consist of two distinct components, a generator,
and a discriminator. When noises or latent features are input into the generator, the
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generator G learns a mapping to synthesize output that is close to the real samples as
possible. Afterward, the discriminator D learns to evaluate the output distribution
and distinguish the synthesized samples from the ground truth by maximizing the
difference between samples generated by G and real samples. The process iterates
until the generator is good enough to synthesize convincing results that resemble the
real data distribution. The network structure is illustrated in Figure 2.9, and the
process can be expressed as

min
G

max
D

V (D,G) = ExΛpdata(x)[logD(x)] + EzΛpz(z)[log(1−D(G(z))], (2.2)

where x represents real samples and z represents the input noise.
Since this interesting idea of the neural network is proposed, researchers have been

making different improvements to barebone generative adversarial networks. Condi-
tional generative adversarial network [45] synthesizes samples with additional class
labels, Wasserstein distance-based loss function improves the performance for cases
with non-overlapping distributions between the real and synthesized samples [46],
deep convolutional generative adversarial network [47] introduces convolutional layers
and batch normalization instead of fully connected layers and achieves better image-
to-image translation. For a larger collection of generative adversarial networks, we
suggest reading a more comprehensive survey [48].

Figure 2.9: The architecture of generative adversarial networks.

2.2.1 Object Recognition

As one of the most fundamental and crucial components of computer vision problems,
object recognition usually describes the task of identifying objects in images or videos.
Tasks including image classification, object localization, and object detection, all be-
long to this category. When given an image with multiple foreground objects, image
classification yields multiple labels that are presented in the given image, usually with
integers and confidence. Object detection and localization locate the presence of the
interesting objects and regress bounding boxes for each class label. By providing a
high-level understanding of the image, object recognition can be applied to a wide
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range of real-world applications. As the cornerstone for complex computer vision
problems such as segmentation and tracking, recent object recognition algorithms see
great progress with the deep learning techniques mentioned above. Traditional object
recognition approaches utilize hand-crafted features to detect and local interesting ob-
jects. In image classification and object detection and localization, calculating scale-
invariant feature transform (SIFT) features [49] and histogram of oriented gradients
(HOG) features [50] and matching the feature points was widely adopted. However,
both the accuracy and the efficiency of non-learning-based methods are sub-optimal
for augmented reality applications.

With the development of a deep neural network, the performance of object recog-
nition has been dramatically improved. Deep learning-based object recognition can
be categorized into two different types. One proposes plausible region divisions of the
input image followed by classifying each patch afterwards, such as region-based con-
volutional neural network (R-CNN) [51], mask R-CNN [52], fast R-CNN [53], feature
pyramid network [54]. R-CNN first proposes to extract features from input images
using convolutional neural networks for object recognition tasks. It was later im-
proved with a fully convolutional structure [55], a region proposal network [56], and a
multi-scale pyramid representation of features in convolutional layers [57]. The other
directly regress the label and the location of interesting objects without a region pro-
posal stage, such as single-shot multi-box detector [58], You Only Look Once (YOLO)
[59], deconvolutional single shot detector [60]. This type of end-to-end approach re-
gresses the bounding boxes and the confidence of different labels simultaneously. To
further facilitate real-time augmented reality applications, template-based object de-
tection shows great potential [61].

2.2.2 Semantic Segmentation

Semantic segmentation is a computer vision task that aims to understand every pixel
of the input image. By classifying each pixel with a certain label, it can provide a high-
level understanding of the image and facilitate a wide range of applications. In robotics
and autonomous driving, mounted cameras capture the front view to predict the
location of obstacles and decide which lane is safe to drive [62]; In medical diagnosis,
semantic segmented X-ray images significantly reduce the time for the radiologist to
perform an accurate analysis [63]; In augmented reality, semantic segmentation can be
used to separate foreground objects and background environment, making it possible
to composite virtual visualizations with correct occlusions [8].

Traditional semantic segmentation approaches utilize Markov Random fields [64],
random decision forests [65], and support vector machines [66] to achieve more accu-
rate results over naïve solutions such as thresholding, clustering, edge detection, region
growing. These methods usually require additional pre-processing and post-processing
to maintain robustness.

As of now, learning-based approaches have made great progress in semantic seg-
mentation with the advantages of convolutional neural networks: shallower layers have
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Figure 2.10: An example of a deep learning approach to semantic
segmentation using an encoder-decoder network.

a smaller perceptual window to learn features from local regions, while the deeper
layers understand abstract features. Initial solutions are patch classification and each
pixel is classified independently using patches around the pixel. This type of method
is modified from existing convolutional neural network architectures such as VGGNet
and GoogLeNet and requires a fixed-size image with its fully connected layer. Later,
a fully convolutional neural network [55] allows predicting dense per-pixel labels for
images with arbitrary sizes and improved efficiency. Besides the fully connected layer,
the pooling layer also causes the loss of location information during the process of
convolution. To solve this issue, conditional random fields and Markov random fields
are further incorporated into deep learning-based methods [67] to further refine the
ability of localization. Encoder-decoder structured network is a popular choice for
end-to-end training, realized by gradually reducing and restoring the spatial dimen-
sion to retain the spatial information of the original image, as shown in Figure 2.10.
However, this structure is prone to loss of details for high-resolution images due to
its encoding-decoding process. To alleviate this disadvantage, U-Net [63] adds skip
connections to further improve the restoration of the spatial information. While the
performance of these models greatly surpasses conventional algorithms, the efficiency
is still not enough for real-time inference, which is vital in applications like autonomous
driving and augmented reality. Point-wise convolutions and dilated convolutions are
later proposed [68] to achieve low latency with comparable accuracy.

2.2.3 Depth Estimation

Depth information provides valuable hints for computers to understand the geometry
of the scene. While it is possible to directly acquire the depth map with structured
light cameras, such as Microsoft Kinect with infrared sensors, limited effective range,
and sensor noises are problematic in a wide range of applications. In addition, due
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to the interference of sunlight, it is also less reliable in outdoor environments. Light
detection and ranging (LiDAR) devices are robust in outdoor environments, but the
cost dramatically increases with their resolution. Stereovision can calculate disparity
based on a geometry model, however, different intrinsic and extrinsic of camera setups
need to be accounted for to minimize the reconstruction error. To facilitate ubiquitous
augmented reality systems, monocular depth estimation is a crucial yet challenging
task. With accurate depth information, it is possible to enhance larger scale geometry-
aware mixed reality experiences such as interactive physics of virtual objects [69]. In
chapter 5, we showcase the implementation of using monocular depth estimation to
enable rendering visual effects with correct occlusions. Other applications include
robot vision, three-dimensional reconstruction, photo enhancement, etc.

Early literature uses Markov random fields-based probability model [70] and non-
parametric depth sampling [71] to synthesize plausible depth maps. In recent years,
learning-based approaches have demonstrated their capability of learning the map-
ping between color images and depth maps and generating depth prediction with
improved accuracy and high efficiency. Supervised methods [72] [73] [74] [24] directly
regresses the depth value of each pixel and minimize the distance between the pre-
diction and the ground truth using dataset acquired with depth sensors. Similar to
semantic segmentation, fully convolutional neural networks [73] have also seen con-
siderable improvement in accuracy. However, considering high-quality depth dataset
is expensive to obtain, unsupervised methods are also a popular research topic for
depth estimation. Stereo-view-based [75] and multi-view-based methods [76] projects
multiple views according to predicted depth maps and minimize the reconstruction
error. However, some methods require stereo inputs [75] and some methods require
reliable matching between images [77], further limiting their practicality of them in
augmented reality applications. The more detailed and specific background will be
addressed in individual studies described in Chapter 4 and Chapter 5.

2.3 Multi-task Learning

Mixed reality applications usually require an accurate and efficient understanding of
the scene with multiple modalities. Besides predicting the pose of the camera with a
reliable geometric registration process, recognizing in-scene objects of interest, under-
standing their high-level meaning of them, or even reconstructing three-dimensional
models are all important capabilities of an immersive mixed reality application. Al-
though deep learning has pushed computer vision forward greatly, maintaining a sat-
isfying accuracy while keeping computational costs low to facilitate real-time usage is
still a challenging goal.

Motivated by the learning process of human beings, using the knowledge from one
task to assist other tasks is an intuitive and straightforward idea. For instance, when
humans learn to recognize the shapes of a certain type of object, it is intuitive to
them to accomplish a related but different task, such as drawing them out. When
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Figure 2.11: A comparison between the traditional single-task based
learning designs and the multi-task learning designs.

it comes to deep learning, traditional approaches learn a latent representation of the
same scene independently with multiple neural networks, as illustrated in Figure 2.11
(a), and predict in isolation for tasks such as object recognition, depth estimation, and
semantic segmentation. Multi-task learning with a schematic diagram of Figure 2.11
(b), proposes to learn the underlying features that are shared across different repre-
sentations of the same input so that each model can better understand the context,
which is otherwise difficult to comprehend independently. In the past few years, multi-
task learning has gained popularity in computer vision, computer graphics, natural
language processing, and many other research communities. In this section, we first
explain the definition of multi-task learning. We then categorize multi-task learning
approaches into three different learning paradigms based on the input and output,
and briefly review the strength and applications of each of them.

Given n multiple tasks Ti, i = 1, 2, 3, . . . , n where all tasks are weakly or strongly
related, let Li denote the loss of each specific task to optimize, the objective of the
entire multi-task learning model is to optimize

Lmulti−task =
∑
i

wi · Li, (2.3)

where wi defines the weight of a single task. By learning multiple tasks together,
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this strategy usually improves the performance of every task. Homogeneous-feature
multi-task learning methods usually receive different inputs to optimize the same task,
while the heterogeneous-feature ones learn to optimize different types of tasks such
as depth estimation and semantic segmentation. Both methods can be applied to
supervised, unsupervised, and semi-supervised learning processes. Without special
explanation, we focus on supervised settings for the studies in this thesis.

The advantages of multi-task learning can be concluded into three different aspects.
First, to ensure a good result for different tasks, the model usually needs to gain “true”
knowledge of the input samples, and make the hidden representation more robust and
accurate. A great improvement in generalization is achieved through “eavesdropping”,
leveraging the useful features of other tasks during the training process. A better gen-
eralization will result in higher accuracy and robustness when compared to learning
the same task independently. Second, with shared layers in the multi-task learning
model, the overall model sizes are usually reduced. This inherent feature of multi-task
learning networks greatly benefits mobile mixed reality applications with decreased
memory usage. At the same time, by eliminating the process of encoding features
repeatedly, the inference time can also be optimized with multi-task learning, further
facilitating the real-time demand of mixed reality. Finally, different training data are
implicitly aggregated during the multi-task training process, alleviating the problem
of insufficient training data. For certain mixed reality applications such as omnidirec-
tional format media, quality training data is indispensable yet expensive to acquire.
The ability to accomplish several tasks at the same time with improved effectiveness
and efficiency, while reducing the combined size of models and requirement for the
large-scale training dataset, makes multi-task learning perfect for solving issues in
mixed reality. I believe research in multi-task scene understanding can help better
understand the physical and virtual environments and improve an immersive mixed
reality experience in the future.

Figure 2.12: An example of using multi-output regression for learn-
ing hand pose and semantic segmentation simultaneously [8].
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2.3.1 Multi-output Regression

Multi-output regression, or multi-label learning, describes a multi-task learning paradigm
in that every single input corresponds to multiple modalities of ground truth labels.
An example is shown in Figure 2.12. Assuming that a training dataset of multiple
modalities is available, solving all the subproblems in parallel as a multi-output re-
gression problem is advantageous [78]. Using the example from the study described in
Chapter 3 [8], if I want to train a neural network to learn hand semantic segmentation,
a model that is only trained with the color to semantic segmentation independently
might fail in real-world scenarios with different lighting and perspectives. Instead, a
multi-output regression design that estimates the hand pose simultaneously can give
hints and advise a more accurate latent representation of hands.

Figure 2.13: An example of using multi-view learning for learning
depth estimation with equirectangular view and cubemap view simul-

taneously [79].

2.3.2 Multi-view Learning

Contrary to multi-output regression with single input and multiple outputs, multi-
view learning aims to learn a single task from different inputs. Considering that
multi-view data are widely available in different applications across diverse domains,
learning with different views can improve the generalization for solving each view
independently. Here, views are not limited to different positioned cameras captur-
ing the same scene, instead, they can be sampled with different modalities such as
video stream and auditory signals [80], words and images [81], etc. The additional
information from other views provides insight to learn better features when analyzed
simultaneously. A straightforward approach is to directly apply different views to a
single-view network. However, it is prone to overfitting for datasets with a relatively
small size. Recent multi-view learning learns the correspondence that can models
the features from different views to each other, showing an advantage of better accu-
racy. An example of multi-view learning is shown in Figure 2.13. As shown in the
Figure 2.13 (b), since quality omnidirectional training data is not widely available,
another major advantage of multi-view training is that manually synthesizing new
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views can still improve the performance of the network. By projecting spherical infor-
mation to an equirectangular formant and cubemap format, the approach described
in Chapter 4 achieves improved accuracy over traditional deep learning methods.

2.3.3 Multi-input Multi-output Learning

Due to that there is an underlying correlation between multiple tasks, and multi-
ple views with different modalities also share overlapping features, it is intuitive to
combine multi-output regression and multi-view learning to benefit from the advan-
tages of both. One example is shown in Figure 2.14, the study described in Chapter
5 learns depth estimation from an equirectangular view and semantic segmentation
from a cubemap view simultaneously to achieve higher accuracy. The challenge of
jointly learning multiple tasks is to find a good balance between each task. Previous
methods manually refine the weight by comparing the difficulty of each task [82], us-
ing homoscedastic uncertainty to determine the weight of each task [83], and using
gradient normalization to dynamically adjust weights [84].

Figure 2.14: An example of using multi-input multi-output learning
for learning depth estimation and semantic segmentation simultane-

ously [24].

Datasets play an important role in multi-task learning and computer vision tasks.
For supervised training, it is challenging to capture a great diversity of objects with
high quality, in addition to multiple modalities that pair with each other. Popular
datasets for multi-task learning include the NYUv2 dataset [85], which has color, anno-
tated semantic segmentation, and depth maps for indoor scenes, the CelebA dataset
[86] contains color and multiple attribute annotations, the Cityscapes dataset [87]
consists of color, classifications, and instance segmentation. In the context of mixed
reality applications, many complex computer vision tasks are hindered by scarce and
expensive labeled data. For instance, egocentric hand-object is an important feature
of immersive mixed reality, however, it exceeds the effective range of commercial depth
sensors, making such training data difficult to acquire. Moreover, 360-degree images
that are frequently used in mixed reality have severe distortions when projected to a
two-dimensional plane, rendering traditional perspective datasets such as NYUv2 less
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effective. Therefore, an effective data augmentation method is crucial for using multi-
task learning in mixed reality. Previously, learning-based data augmentation has seen
great success to reduce the cost of data collection. The generative adversarial network
can effectively synthesize new views, modalities, and domains [88]. In this thesis, we
use multiple different learning-based data augmentation methods to facilitate effective
multi-task learning to understand the images in the context of mixed reality.
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Chapter 3

Grasping the Local: Solving
Hand-object Occlusion in Mixed
Reality

In this chapter, we start from a smaller spatial scale by focusing on the interaction
between users’ hands and in-hand objects in a mixed reality environment. While a
similar idea has already been discussed in the previous thesis [89] [8], we further pol-
ished the idea in later research by successfully utilizing the latest data augmentation
and learning-based scene understanding algorithms. The originality and contribu-
tions of this published work [90] provide valuable insights into understanding one of
the most crucial scopes of mixed reality technology: local interaction.

3.1 Introduction

Over the last few years, the concept of mixed reality, usually comprising virtual reality
and augmented reality, has been drawing a growing amount of research interest from
many for its plentiful capabilities and applications [91]. Instead of rendering an entire
virtual environment from scratch, recent mixed reality highlights its capability of
aiding users to accomplish various tasks [92] and providing them with a seamless and
immersive experience through overlaying rendered virtual objects onto their visuals
of surroundings [93].

Figure 3.1: Webcam-based augmentation process in a mixed reality
application without occlusion handling.



30 Chapter 3. Grasping the Local: Solving Hand-object Occlusion in Mixed Reality

This augmentation process is usually realized with more advanced head-mounted
displays, either optical see-through types or streaming the real world with mounted
webcams. Thanks to highly accurate and efficient computer vision algorithms and
polished applications, mixed reality hardware has recently seen increasing commercial
acceptance for assisting real-world tasks [94]. A wide range of research fields has
been incorporating mixed reality as a feasible component to their research to further
their understandings of human-computer interactions and better embedded systems.
Numerous applications of education, healthcare, and entertainment verify the benefit
of seamlessly augmenting real-world visuals with mixed reality objects.

For augmented objects that are virtually constructed and have 3-dimensional mod-
els available, when combined with computed 6 degree-of-freedom trajectories of the
device, it is trivial to render occluded portions. However, the real world is usually
observed by using RGB cameras or depth sensors. With noise and sparse tracking,
it is challenging to determine the foreground-background relationship between the
augmented objects and the reality (see Figure 3.1), resulting in incorrect occlusions
for most of the rendered virtual objects’ pixels. If we render the virtual object in
absence of correct occlusions, an unrealistic “floating” illusion will lead to incorrect
depth/distance perception, ruining an immersive mixed reality experience [95]. An
example can be seen in Figure 3.2.

Figure 3.2: An example of hand-object interactions with incorrect
occlusions in a mixed reality application.

The hand is one of the key components in mixed reality, and controller-free hand-
object interactions are critical to a wide range of mixed reality applications such as
surgery training [15], tangible interface [14], and driving simulations [21]. However, the
feasibility and immersive experiences of interaction-involved applications are severely
limited by false occlusions. When users are freehand interacting with objects, it is
highly possible that their palm and fingers will partially occlude the object.

To resolve hand-object occlusions in mixed reality, previous literature proposed
several methods to resolve occlusions for rendered objects. Nevertheless, the qual-
ity of the proposed approaches is sub-optimal when directly adopted in hand-object
scenarios. Reconstruction-based methods utilize algorithms such as simultaneous lo-
calization and mapping to acquire the geometry of the entire environment and then
render virtual appearances with Z-buffer [95]. However, these methods are not viable
for hand-object interactions. With highly dynamic egocentric motions, it is difficult to
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achieve quality reconstruction in a timely manner. For tracking-based methods that
trace the contour of targets with optical flow, their performance is restricted by the
highly deformable hand structures and acute self-occlusions [96]. Despite the fact that
depth-based methods can overcome previous challenges, shadows and noises induced
by sensors, misaligned edges, and limited performance when utilized for close ranges
all hinder the feasibility to be applied to egocentric scenarios [97].

In this chapter, we start from a smaller scope and try to better understand the user
in mixed reality with scene understanding and data augmentation. We first present a
photo-realistic and occlusion-aware hand-object database comprising both color and
depth information. It aims to alleviate the ambiguity induced by occlusions and
facilitate the following deep learning system. By synthesizing hand-object samples
with occlusions and augmenting color images with photo-realistic appearance with
a generative adversarial network, a large-scale multi-modal database accommodating
accurate annotations of hand joints and semantic segmentation is augmented with
minimal manual effort.

Taking advantage of the proposed database, we design a jointly trained deep learn-
ing network that shares knowledge between the tasks of predicting hand postures and
generating semantic segmentation. By passing information between tasks, our system
can predict more consistent results compared to existing single-task architectures.
Making use of the occlusion-aware database, the jointly learned neural network shows
robust performance in hand-object interactions. With accurate predictions of the hand
posture and semantic segmentation, the framework provides valuable information for
the following novel real-time optimization system to finally resolve the hand-object
occlusions.

With robust posture and semantic segmentation being available, we design a novel
real-time optimization system that computes valid occlusions when augmenting physi-
cal objects with the appearance of a virtual object. To overcome the static-scene-only
constraint of reconstruction-based methods, the proposed system efficiently recon-
structs the spatial area of interest by performing a two-step process: optimize and
fit. By iteratively optimizing a parameterized virtual hand model with regard to the
semantic segmentation result followed by fitting the optimized model back to the pre-
dicted postures instantaneously, the system eventually computes occlusion masks in
real-time and renders the hand-object interaction with precise occlusions.

Experimental results highlight accurate and realistic overlays of rendered hand-
object interactions. A quantitative benchmark shows improved performance over
methods of state-of-the-art. A qualitative comparison shows more natural visuals.
A comprehensive user study verifies more intuitive mixed reality experiences against
existing methods. We expect the result of this chapter to be applied to egocentric
mixed reality applications with a focus on hand-object interactions including simula-
tions.

The contributions of this chapter are summarized as follows:

• A photo-realistic and occlusion-aware hand database with paired color and depth
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information that facilitates robust hand posture prediction and semantic seg-
mentation. The database is available for future research through the script.

• An occlusion-aware jointly trained deep learning network that predicts hand
postures and semantic segmentation simultaneously and instantaneously. With
shared knowledge between two tasks, the network yields accurate results even
under challenging hand-object interactions with severe occlusions.

• A novel real-time optimization system for computing correct hand-object oc-
clusions. It spatially reconstructs the area of interest using iterative optimizing
and fitting.

The rest of the chapter is organized as follows. We revisit existing occlusion
solutions and hand posture prediction methods in Chapter 3.2. In Chapter 3.4 and
3.5, we elaborate on the proposed occlusion-aware RGBD database and the joint deep
learning framework to predict hand postures and semantic segmentation in real-time.
In Chapter 3.6, we present the novel two-step system to resolve hand-object occlusions.
Experimental details, evaluations, and the user study are described in Chapter 3.7.
Finally, Chapter 3.8 concludes this chapter.

3.2 Related Work

As the main objective of this work, we first review previous occlusion solutions for
mixed reality. Since the hand-object database and the jointly trained deep learning
system are both crucial components of our method, we also revisit existing deep
learning posture prediction approaches and hand posture prediction databases.

3.2.1 Occlusion in Mixed Reality

A low-quality rendering in mixed reality, such as inaccurate occlusions and false light-
ing, will spoil the immersive experience [95] and introduce incorrect perception of the
scene [98]. Methods in the following research compute occlusions to faithfully compos-
ite virtual objects onto the visuals of the real surroundings with no prior knowledge
of the scene geometry.

Tracking-based solutions. Semi-automatic approaches, including handpicking the
object boundary [99] and manually annotating the foregrounds and backgrounds [96],
usually calculate occlusions with the traced contour of the foreground target. This
type of method requires additional lengthy input and functions based on the implicit
assumption of a finite and constant contour. Moreover, the performance of contour
extraction algorithms can easily be affected by false initialization, inadequate resolu-
tions, incorrect local minima, and so on.

Reconstruction-based solutions. Considering that the foreground-background rela-
tionship for multiple objects can be computed in a straightforward way given precise
models of the current scene, utilizing a fast simultaneous localization and mapping
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algorithm and reconstructing the entire scene is a viable choice [95]. Nonetheless, this
solution is extremely computationally expensive with strict requirements: an almost
static and well-textured scene coupled with translating motions from the perspec-
tive. When it comes to hand-object interactions, it is difficult to establish a satisfying
reconstruction. Another practice uses prepared 3-dimensional virtual models of the
real-world targets to perform a fitting task [100] during usage. The accuracy of this
approach highly depends on the robustness of tracing and often yields subpar results
for deformable targets. Without an occlusion-robust tracking solution, optimization-
based methods are prone to inconsistent results.

Depth-based solutions. Utilizing supplementary depth sensors to obtain the per-
pixel depth information directly can serve the purpose as well. However, temporal
shadows and noises, misaligned depth edges, and other underlying problems lead to
low-quality results. A stream of research refines the yielded depth information at
the boundaries [97] to improve the overall consistency and accuracy. However, most
state-of-the-art algorithms are impractical when the computational cost is a trouble
that cannot be overlooked in interactive mixed reality applications [101]. Refining
the obtained depth in a "layered" fashion with cost-volume filtering [102] can help
achieve real-time performance, but it generalizes poorly for complex scenes such as
interactions. Besides, the hand being simultaneously foreground and background ob-
ject would make color-based segmentation impractical.

By leveraging the efficiency of tracking-based and model-based methods, we pro-
pose a real-time approach that solves hand-object occlusions in mixed reality without
introducing a lengthy initialization, additional sensors, or an expensive process of
reconstructing the entire scene.

3.2.2 Occlusion-aware Hand Posture Prediction

Learning-based approaches. Vision-based 3-dimensional hand posture prediction is
a demanding problem to solve due to its high degree of freedom articulations and
severe self and hand-object occlusions. Marker-less approaches introduce generative
components to improve the prediction between the simulation and the observation,
such as consistencies between frames [103], iterative closest point [104], particle swarm
optimization [105], etc. However, most methods require a lengthy initialization pro-
cess, and their precision highly depends on quality observation. To address such
restrictions, learning-based discriminative components have become a popular choice
recently [106]. Although being beyond the scope of this study, adapting MANO [107]
to solve interactions between hands [108], and joint tracking of hand and object [109]
are all promising directions for improvements. In this work, we use a learning-based
approach to precisely and efficiently predict hand postures without manual initializa-
tion.

Occlusion-aware databases. One of the major issues of learning-based hand track-
ing methods is difficulties in preparing training samples with correct 3-dimensional an-
notations of the joints. Recently, a handful of high-quality databases for 3-dimensional
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hand posture prediction are released [105]. Even databases constructed upon manual
annotations exist [106], inaccuracy and insufficient size are problems that can hardly
be dismissed. Multi-view approaches [110] suffer from the limitation of occlusions due
to their outside-in setups. To obtain accurate paired data, some works render syn-
thetic paired color and depth data for hand-object images with virtual hand models
and cameras [106]. Nevertheless, existing CNNs-based approaches that are trained
on synthetic data generalize poorly due to the domain gap between synthetic and
real-world images. To improve the accuracy of occlusion-aware hand posture predic-
tion from RGBD input, our method leverages a generative adversarial network and
incorporates the geometric consistency loss [88] to synthesize a photo-realistic hand
database that comprises paired color and depth information.

3.3 The Framework Overview

To achieve the goal of augmenting in-hand objects with correct occlusions in real-
time, our approach consists of two major components (see Figure 3.3). The first one
is an occlusion-aware joint learning framework for (a) hand posture prediction and
(b) semantic segmentation. This involves building an occlusion-aware hand database,
a joint posture prediction module, and a semantic segmentation module. The second
one is a real-time optimization-based occlusion resolving system (c) for virtual object
augmentation. This involves optimizing a hand model using the predicted semantic
segmentation, fitting the model with the tracked hand posture from the joint learning
step, and resolving occlusion masks for augmenting virtual objects.

3.4 Data Augmentation with Generative Adversarial Net-
work

We proposed a photo-realistic and occlusion-aware hand-object database of paired
color images and depth maps to facilitate learning-based hand posture prediction and
semantic segmentation in interactions. This is motivated by the difficulty to annotate
3-dimensional hand joints and semantic segmentation in occluded samples. Capture-
and-annotate methods are inadequate due to ambiguities, glove-based methods yield
different appearances and are not suitable for bare-hand applications. To acquire
accurate posture data and semantic segmentation for hand-object interactions, syn-
thesizing samples and annotations is a more efficient and effective direction when
compared to other methods.

To efficiently synthesize the photo-realistic and occlusion-aware RGBD database,
we repurpose an existing synthetic RGBD hand database [106]. It contains samples
with hand-object interactions and joint annotations. To adapt it to our use, we first
re-render the hand into binary masks to facilitate the semantic segmentation task.
Inspired by [88], we then use the generated semantic segmentation as a geometric
constraint to transfer the photo-realistic appearance to synthetic samples by training
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Figure 3.4: The CycleGAN architecture of our photorealistic RGBD
data generating network.

Figure 3.5: An example of generated photorealistic RGBD hand
database. Images from left to right are (a) synthesized RGB; (b) syn-

thesized Depth; (c) synthesized RGBD; (d) photorealistic RGBD.

a CycleGAN. To ensure annotations stay correct before and after the transfer, we
calculate the geometric consistency loss from the predicted and real silhouettes:

Lgeo = −
∑
i

(SilogŜi + (1− Si)log(1− Ŝi)) (3.1)

where S is the rendered segmentation and Ŝ is the mask of the generated sample. The
pipeline is explained in Figure 3.4 and Figure 3.5 shows some samples of the database.
We only show the synthetic-to-real half of components for simplicity.

By bridging the domain difference between synthesized and real samples, our ap-
proach greatly improves the accuracy of learning-based approaches. A photo-realistic
RGBD hand-object database with occlusions that contains 40,000 accurate hand pos-
ture and semantic segmentation annotations is created to facilitate various applica-
tions.
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3.5 Real-time Multi-output Regression Architecture

With precise hand posture annotations and semantic segmentation of photo-realistic
hand data available, we propose a deep-learning system that simultaneously predicts
semantic segmentation and hand posture. As illustrated in Figure 3.3 (a) and (b), we
pass the input to our joint-learning system with a resnet-structured posture prediction
module and a U-net-structured semantic segmentation module running parallelly to
each other.

To achieve a more coherent prediction even under severe occlusions, we exploit the
information of posture annotations and inform the other task of potential uncertainties
with concatenated heatmaps of posture prediction. More specifically, in addition to
predicting 3-dimensional coordinates of each joint, 2-dimensional Gaussian heatmaps
of every joint are also created with the posture prediction module. We find that two
tasks are complementary to each other since hand joints should always be located
within the hand contour, hence we concatenate and convey heatmaps to the semantic
segmentation module. With a heatmap loss calculated to reduce false-positive pre-
dictions, our joint learning system has improved accuracy compared to two separate
modules without communications.

3.5.1 Posture Prediction Module

To predict hand postures with improved accuracy and robustness, we take advantage
of our generated photo-realistic hand database and propose the posture prediction
module to estimate hand postures. With the input of an RGBD image, the posture
prediction module is trained to regress the 3-dimensional displacement of 21 hand
joints. As additional information to be shared with the other task, 2-dimensional
Gaussian heatmaps are also output in image space with the posture prediction module.

A two-step localizing-and-tracking method is used to improve the robustness of
the network. We adapt the HALNet [106] and trained with the proposed database
to localize the hand when an image is inputted. D̃ that contains the hand will be
cropped from the input RGBD frame D and passed to the next step. We then propose
a posture prediction network bases on a modified ResNet-50 structure with reduced
layers to achieve real-time performance. By minimizing the Euclidean loss between
predicted joints and ground truth Ĵ, our hand posture prediction module can estimate
3-dimensional hand joints’ coordination J in real-time during usage.

dpred =
N∑
i=0

J − Ĵ
2
2 (3.2)

Since hand posture annotations being a high-level information is expensive to
acquire but highly correlated to and beneficial for different tasks (model reconstruc-
tion, normal estimation, etc.), we exploit the learned image to pose mapping through
heatmap representations. As 2-dimensional likelihood heatmaps Hj are regressed
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during pose estimation for each joint, we concatenate heatmaps of each joint to ob-
tain hand heatmap Hh, and pass the information to the segmentation module during
training.

3.5.2 Semantic Segmentation Module

Figure 3.6: A comparison between segmentation masks estimated
with and without heatmap loss. (a) Input color image. (b) Ground
truth segmentation mask. (c) Estimated mask without the heatmap

loss. (d) Estimated mask with the heatmap loss.

To facilitate the real-time optimization system in the next step, we propose a se-
mantic segmentation module to estimate hand segmentation from an image input. To
take advantage of hand posture knowledge, the segmentation module outputs inter-
mediate heatmaps for mask estimations, and calculates an additional heatmap loss to
ensure that the hand joints fall within the segmentation estimation. Combined with
the synthesized occlusion-aware pairwise images and masks, this module can handle
occluded scenes with improved performance.

Structure-wise, the segmentation module consists of a U-Net structure with the
encoder part replaced with a ResNet-18 backbone. Considering the binary output
mask, we choose the dice coefficient as our segmentation loss function.

Ldice =
2|Ŝ ∩ S|
|Ŝ + S| (3.3)

The Ŝ in Eq. 3 is the estimated segmentation while S is the ground truth.
To reduce false positives in estimated masks, we leverage the information, heatmap

of the hand Hh obtained from the posture prediction module. Apart from the main loss
between the segmentation masks, with the average pooling, we create activation maps
at the same time for calculating the complementary heatmap loss between the H̃h

obtained by the segmentation module and the Hh with Euclidean loss. The weight of
heatmap loss is set at 0.1 during training, and the resolution is downscaled to 640x360
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to maintain a stable speed. As demonstrated in Figure 3.6, we can clearly see the
effectiveness of guiding the semantic segmentation task through heatmaps passed by
the posture prediction module.

3.6 Real-time Optimization System for Occlusion

In this section, we explain our novel real-time optimization system that resolves the
occlusions in hand-object interactions through a 2-step optimizing-and-fitting method.
With the hand posture and semantic segmentation information available, we spatially
reconstruct the region of interest with high accuracy by first iteratively optimizing a
virtual hand model based on the user’s hand and then fitting the updated model to
predicted hand postures.

This system design circumvents the limitations of previous occlusion resolving
approaches effectively. For reconstruction-based methods, we overcome the constraint
of only being able to recover a static scene by fitting the optimized model to estimated
joints in real-time. For tracking-based methods, the problem of low-quality outcomes
against changing shapes or under severe occlusions is solved by our occlusion-aware
joint learning system. Instead of tracking contour directly, we calculate it through
more occlusion-robust hand postures. With local models of the hand and the virtual
object available, we then augment the object through an occlusion mask calculated
in real-time.

Figure 3.7: The process of updating the hand model during runtime
with estimated hand poses and masks. The model is optimized by
minimizing the distance between observed and model’s rendered seg-

mentation.

3.6.1 Model Optimization

With the current frame of hands available, a hand posture and semantic segmentation
are estimated with the joint learning system and inputted to this occlusion module to
optimize a virtual hand model Md in real-time. This iterative process (Figure 3.7) is
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effective and efficient against hand-object interactions by only reconstructing models.
More specifically, by fitting the (b) current model according to (a) the predicted
hand posture J and projecting the model back to the image plane where the scene
is rendered, we can obtain (c) a binary mask S̃. At the same time, we can acquire
(d) an estimated hand segmentation mask Ŝ through our segmentation module. The
hand model consists of finger-wise components and a palm component, and each has
parameters of vertical and horizontal scale. We then update (e) the current model
Mu to minimize the Euclidean distance dS = ‖Ŝ− S̃‖ between observed and rendered
hand masks.

To further enhance the stability of outputs, we take consistency into consideration
and minimize the distance through a step-based iterative optimization. The initial
step for updating the scale of the model is 0.2 for every 30 frames. When the model
meets a plateau for successive 300 frames, we upscale/downscale the step by 50%.
Since we want to achieve a more stable output, the optimization is stopped when the
step size goes smaller than 0.02 to save computational power and prevent flickering
effects in the implemented real-time application.

3.6.2 Model Fitting and Virtual Objects Augmentation

To cope with fine occluding edges between the user’s hand and the in-hand objects, we
propose a way to calculate occlusion masks through refined depth relations by com-
paring the reconstructed hands and objects to be augmented in a virtual environment.
Existing depth-based methods suffer from problems including noise and misalignment,
and their quality deteriorates when the distance from targets gets closer.

More specifically, we solve occlusions with the updated hand model by fitting
it to the joints acquired through the hand posture prediction module in our joint
learning framework. Our approach minimizes the fitting energy with regard to the
optimized hand model. The updated hand model is displaced to minimize the distance
dj between the captured hand joints Ji and the current hand model Mu(i):

dj =

√√√√ N∑
i=0

(dJ(i)− d̂Mu(i))
2 (3.4)

where d(i) is the normalized distance obtained by d(i) = ri/
√
Ŝ. The ri is the distance

between the feature joint Ji(i = 0, 1, ..., N) and the root of the hand Jr. we fit the
optimized hand model Mu back according to the acquired joint coordination J to
calculate the occluding mask m, the spatial location is shown on the image plane to
which the invisible part of the virtual object V corresponds.

We decide the label of each point as ‘visible’or ‘invisible’of V based on the com-
parison between the 3-dimensional displacement of V and the optimized hand Mu to
determine the occluding mask m. During the rendering process, pixels of V ′ labeled
with ‘invisible’will not be rendered to represent the occlusion. Based on the acquired
occlusion mask, some portions of the virtual object model will be masked invisible
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while other portions remain visible to the user. This process is done by frame and
will remain robust even under strong motion.

3.7 Experimental Evaluation

3.7.1 Implementation Details

We implemented a complete table-top application (Figure 3.8) to showcase the idea,
verify the quality of masks, and conduct a user study. This Unity3D application
allows users to use their bare hands to interact with real objects augmented with
virtual appearances. The frame rate was fixed at 30 fps with a resolution of 1440 by
1440 per eye using a PC with an Intel 7800X CPU and an NVIDIA RTX 2080Ti.
Although a piece of video-see-through equipment (Intel RealSense SR300) is used
during the experiment, our system also works with optical-see-through devices.

Figure 3.8: The configuration of the implemented application.

Table 3.1: A comparison between the proposed method and the
previous methods
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3.7.2 Experimental Results

Qualitative Results

Figure 3.9: A mixed reality scene rendered with occlusions based on
(a) naive approach that uses raw depth, (b) CVF occlusion [102] and

(c) our approach.

To qualitatively verify the applicability of our proposed system when applied to
hand-object interactions, we compared it to previous real-time occlusion solutions in
the following five aspects. First, the system should be able to resolve the occlusion
with a moving viewpoint. Restricting the viewpoint will significantly reduce the prac-
ticability. Second, the placement of in-scene objects will change constantly, and thus
being able to handle dynamic scenes is critical. Moreover, additional equipment and
complex implementations can limit usability. The detailed comparison is shown in Ta-
ble 3.1. Our approach can handle dynamic scenes with moving objects and egocentric
viewpoints in real-time with a simple setup.

We evaluate our system and verify this is a better method compared to the naive
method that decides the visibility of each pixel based on the raw input of the RGBD
camera, the state-of-the-art CVF occlusion approach [102]. We exclude simultaneous
localization and mapping methods due to their unrealistic requirements of a stable
and rigid environment in hand-object interactions. By placing virtual objects in the
scene to interact with the scene geometry, we implemented a traditional mixed reality
scenario of object insertion to evaluate the accuracy of the occlusion mask and ren-
dered object. Direct results of rendered virtual objects can be observed in Figure 3.9.
The readers are also referred to the supplementary video for further results.

Quantitative Results

Prediction under Occlusions To verify the effectiveness of the improved photorealistic
hand-object RGBD database, our model is trained with a similar architecture to
the JORNet [106] with Caffe framework. The weight of our network is initialized
based on the original ResNet50 trained with ImageNet [111]. We use Percentage of
Correct Keypoints (PCK) as the measure to evaluate the accuracy of our approach.
After training 45,000 iterations with the same configuration based on the original
SynthHands [106] and our improved database, we benchmark both approaches with
the stereo tracking benchmark database [112], which consists of 12 sequences of paired
RGBD images. Figure 3.10 presents the result that and our approach outperforms
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Figure 3.10: PCK benchmark with the Stereo database. The model
trained with the improved database (orange) shows a higher prediction

accuracy compared to the original approach (blue).

the original method trained with synthetic data. With a threshold set at 50mm, the
accuracy is significantly improved from 0.55 to 0.63.

Figure 3.11: Results of three methods to augment a green can with
a virtual Cola can: (a) the real scene without any overlay; (b) result
without any occlusion handling; (c) result when applying the approach
proposed by Liang et al. [113]. The transparency was adjusted to 70%
according to the direction of the palm in this case; (d) result of our

method.

3.7.3 Ablation Study

To validate the quality of the overlay, we mainly focus on the reprojection error in
pixels of the rendered objects. Since the egocentric head-mounted display works dif-
ferently from the traditional screens, the screens are positioned closer to the user and
thus make the pixels easier to be identified. To evaluate the experimental results
quantitatively, we multiply the factor of the pixels per degree of visual angle of the
magnified headset screen with the measured length of the deviated position to obtain
the reprojection error. Figure 3.12 presents an ablative analysis of the hand opti-
mization step. With updated hand models, our combined approach shows the best
performance with the lowest average reprojection errors.
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Figure 3.12: Reprojection errors of occlusion masks acquired by
different approaches for three sequences, pencil, pencil sharpener, and
eraser. While using cost volume filtering (orange) to improve the raw
depth (brown) shows better accuracy, our approach (grey and blue)

shows a further improvement.

While we outperform the previous approaches in the quantitative comparison (Fig-
ure 3.12), we emphasize that our approach can also handle complex scenes that the
hand cannot be labeled as either foreground or background object.

3.7.4 User Study

We designed a participant-based cooperative qualitative evaluation to evaluate our ap-
plication for real-object enhancement. Nine subjects (ages 18-26, average 21.7 years)
without virtual reality/augmented reality experience participated in this study. The
main goal of this study is to test the sense of presence, the realism of the experi-
ence, and stability, and to identify potential issues through interviews after each trial.
This study compares experiences of using four different conditions (Figure 3.11): (a)
without any occlusion handling; (b) with a naive approach [113] that adjusts the
transparency of virtual objects based on the angle of the palm; (c) render occluded
objects without the updated hand model using the proposed method and (d) render
occluded objects with the updated hand model.

During the experiment with the configuration shown in Figure 3.8, each user went
through 3 scenes interacting with a pencil, a box, and a card, with 4 different con-
ditions. The sequence of trials in each scene was randomized to prevent bias. Users
followed instructions to perform the simple task of interacting with objects with trans-
lating and rotating motions. After each trial, feedback was collected through a semi-
structured interview.
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Figure 3.13: Likert-type survey result from the user study. The
experience of each trial is rated from 1 as "Bad" to 5 as "Good" with

a step of 1.

Figure 3.13 illustrates the results of the study. From both the results of the ques-
tionnaire as well as the comments in the subsequent open discussions, we confirmed a
positive impression of our implementation. Since most objects are partly occluded by
fingers during the interaction, and participants were actually holding realistic objects
in hand, the naive solution of adjusting transparency to be fully opaque when partici-
pants flip their hands outward was highly problematic in this situation and resulted in
a strange impression that virtual objects seemed to be fading away when they turned
their arm. This problem can be observed in Figure 3.11. With a K-W test, we verified
a more immersive mixed reality experience and a significantly more realistic feeling
of interacting with virtual objects with our approach (P <.001 in scenes 1 and 3, P
= .022 in scene 2). Some users reported that rendering model hands mitigates some
latency and resulted in synchronization, thus giving them a more consistent feeling.
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3.8 Conclusion of the Chapter

In this chapter, we have presented a real-time method to handle the hand-object
occlusions in mixed reality. We propose a photo-realistic RGBD hand-object database
with precise hand postures and semantic segmentation annotations to facilitate our
occlusion-aware joint learning system. With a novel real-time optimization pipeline,
we utilize the jointly predicted postures and segmentation to calculate occlusion masks
and render objects with correct occlusions. The experimental results show better
quantitative and qualitative performance than previous literature, and a user study
verifies a more realistic mixed reality experience of hand-object interactions. The
implementation shows good accuracy, robustness, and speed with the potential to be
further adapted to other applications.

Since we are using a commercial implementation of object augmentation this time,
there is a technical issue of misalignment when localizing the optimized hand model.
We believe a re-implementation can solve this problem. As a general limitation of
learning-based approaches, greatly changing the appearance of hands such as wearing
gloves may reduce the robustness. In addition, there is no sophisticated occlusion-
aware object tracking in the current implementation and this leads to losing augmen-
tation of the object during experiments due to strong occlusions. Joint tracking of
hand and object is a promising direction for future improvements.
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Chapter 4

Observing the Regional:
Foreground-aware 360◦ Depth
Prediction

In this chapter, we extend the scope to a larger spatial scale: understanding the
foreground objects, by employing scene understanding with data augmentation in
mixed reality. Instead of local hand-object interactions, we investigate contextual
information that requires better comprehension of omnidirectional images that are
prevalent and essential for mixed reality applications.

We start with a novel data augmentation pipeline that generates a large-scale
database with accurate and quality pairs of color and depth information. By re-
purposing existing perspective databases, the proposed database is the first to pro-
vide photo-realistic representations of foreground objects. It facilitates the following
learning-based supervised algorithm of depth prediction and semantic segmentation.
In the second half of this chapter, we propose two different designs to achieve the
goal of outputting depth maps for omnidirectional images with accurate foreground
predictions. The first uni-projection-based design [114] successfully verified the ef-
fectiveness of both the proposed database and a novel auxiliary network, MaskNet,
while the second bi-projection-based architecture [79] further improved the accuracy
by utilizing the equirectangular and cubemap projections at the same time.

4.1 Introduction

With commercial 360◦ cameras becoming widely available and highly efficient to cap-
ture surrounding environments with high fidelity, omnidirectional content has gained
great popularity in education, entertainment, etc. As a result, the need for better
visual reasoning algorithms in the context of omnidirectional media rises accordingly.
One of the most important visual reasoning capabilities is to predict depth informa-
tion from a single-color image as it provides structural clues of the surroundings, and
thus facilitates a wide range of applications including navigation in robotics [115],
stereoscopic rendering in graphics [75], augmenting virtual objects [116].
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Recent advances in deep learning have even extended the capability from the do-
main of traditional 2-dimensional content to omnidirectional content [117]. However,
existing omnidirectional approaches produce sub-optimal estimations on real-world
scenarios due to their lack of consideration of dynamic foreground objects. Since
obtaining omnidirectional RGBD data with dynamic foreground objects is a more
challenging problem compared to traditional perspective data, previous researchers
resort to different methods to synthesize high-quality paired omnidirectional color
and depth samples. For captured-based approaches, using a stereo setup of two 360◦

cameras will inevitably include the other camera in the captured data [118]. While
recent 360◦-capable scanning devices [119] can acquire paired RGB and ground truth
depth of scenes with improved quality, they are incapable of including any dynamic
object as a result of scanning and stitching scheme (Figure 4.1) [120]. For synthesis-
based approaches [121], although researchers attempt to solve this problem by in-
serting 3-dimensional models into the scene to improve the prediction (Figure 4.2),
it is challenging to efficiently generate highly-realistic virtual foreground objects that
resemble real-world ones [122], and non-photo-realistic data often lead to undesirable
and inaccurate outputs.

In this chapter, we tackle the problem of foreground by first augmenting databases
with realistic foreground representations. We observe that given the same object with
a determined distance, its scale in spherical images should remain consistent. Taking
advantage of it, we effectively composite color data of abundant and easily obtainable
2-dimensional databases and rendered omnidirectional images according to ground
truth depth maps to ensure correct occlusion representations. To preserve correct
distortions in equirectangular images, we project the data to cube maps before and
after compositions.

We then propose two different network designs to effectively learn the depth es-
timation for foreground objects from a monocular omnidirectional image. The first
one is a novel auxiliary deep neural network that estimates both the mask of the
foreground objects and regresses the depth of the omnidirectional images. With the
depth and segmentation estimations, we propose a new local depth loss of dynamic
foreground objects to achieve more consistent depth predictions. This solves the prob-
lem that small areas with steep local gradients often got minimized when regressing

Figure 4.1: A demonstration of incorrect representations of dynamic
objects (e.g. a running person) captured with an omnidirectional

RGBD scanning device.
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Figure 4.2: The previous approach of inserting human models in-
troduces the problem of severe domain bias. This is demonstrated by

comparing synthetic data (left) with captured data (right).

the global gradient of the prediction, resulting in areas of interest that are frequently
smoothed out in existing work.

The second network is proposed to further improve upon the first work. It obtains
accurate and sharp foreground depth prediction with consistent global predictions
by exploring a bi-projection algorithm that consists of an equirectangular projection
that predicts global depth information and a cubemap projection that simultaneously
estimates the depth and the semantic segmentation of cube faces. While the equirect-
angular projection ensures a consistent and smooth global context, the cubemap faces
provide insights regarding local details with a smaller FOV. By merging two projec-
tions together, we achieve better depth prediction for omnidirectional images with
foreground objects.

During our experiments, we choose humans as the dynamic foreground object to
show the efficacy of our approach. As a foreground object, human shares both a high
complexity in deformation and non-uniform depths, and great importance being one
of the most interested and common subjects to deliver the context of the image. By
showcasing accurate estimations of humans, we demonstrate the ability of our method
to be generalized to other foreground objects.

Experimental results show that both proposed methods yield more consistent
global estimations and more accurate local estimations against contemporary state-
of-the-art models quantitatively and qualitatively. Moreover, the bi-projection-based
network provides more accurate results when compared to the first uni-projection-
based approach, verifying the effectiveness of an improved design. This research is
best applied in fields including occlusion-aware augment reality and stereoscopic ren-
dering.

The technical contributions of this chapter are summarized as follows:

1. We propose a method to synthesize an RGBD omnidirectional database with
dynamic foreground objects to tackle the challenge of estimating the depth of
them in the context of spherical images. The database is offered to promote
future research.

2. We first employ the proposed auxiliary network that estimates depth and seg-
mentation masks to calculate a new local depth loss of dynamic foreground
objects. This can resolve the issue of steep local gradients getting smoothed out
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during optimization and improve the estimation results of local regions. The
source code is publicly offered online.

3. We further propose a bi-projection-based network that can more effectively pre-
dict the depth of global input and the foreground objects. By concatenating
learned depth representations from both equirectangular projection and cube-
map projection, this foreground-aware design shows the superior performance
when compared to the state-of-the-art methods.

The rest of the chapter is organized as follows: we revisit learning-based monocu-
lar depth estimation methods and methods for synthesizing training data in Chapter
4.2. In Chapter 4.3, we explain the novelty of our database and describe the gener-
ation framework. In Chapter 4.4, we first describe the uni-projection-based network
architecture and the proposed loss function to leverage the database. Details of exper-
iments are presented along with qualitative and quantitative evaluations. In Chapter
4.5, we explain the improved bi-projection-based network design and its implementa-
tion details. We then present benchmarks against the state-of-the-art methods and
the first design to highlight the efficacy of our methods.

4.2 Related Work

4.2.1 Learning-based Depth Prediction

Estimating the depth given a monocular RGB image is one of the most fundamental
capabilities in understanding the 3-dimensional geometry of the scene [123]. A wide
range of applications in robotics, graphics, virtual reality, etc. can benefit from more
accurate depth predictions. Owing to more established machine learning algorithms,
learning an implicit relation between color and depth has seen significant progress
recently.

A variety of algorithms [72] [73] have been proposed by training a model with col-
lected color and ground truth depth images in a supervised fashion. Lately, numerous
strategies have been proposed to achieve a more coherent and accurate monocular
depth estimation. Multi-scale networks [124] make coarse global depth predictions
and refine the local prediction. Multitask learning [83] [125] with multiple regression
and classification objectives is also prevalent in understanding scene geometry and se-
mantics due to their complementarity. A fully convolutional network architecture [73]
that endows novel up-sampling blocks achieved impressive accuracy and efficiency.

Unsupervised methods focused on a stereo correspondence framework to cope with
the need for an expensive secondary supervisory signal. This is either accomplished
by synthesizing stereo-views with left/right consistency [75] to produce intermediary
disparity map [126] [127], or multi-view consistency with structure-from-motion [76]
to learn a dense disparity prediction.

To yield accurate estimations of both global and local objects in the context of
the omnidirectional domain, lacking paired data with dynamic foreground objects
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and distortion introduced by equirectangular projection will result in poor outputs
for supervised approaches. On the other hand, while some unsupervised approaches
do not explicitly require paired databases, issues like distortions and occlusions still
persist.

Therefore, predicting the depth of omnidirectional contents with the aforemen-
tioned 2-dimensional approaches often yields sub-optimal results [117]. Failing to
learn feature representations in the equirectangular domain inevitably leads to inferior
accuracy and coherency. To improve the performance of prediction in 360◦ contents,
cubemap projection is one of the most popular choices. By projecting spherical signals
onto the faces of a cube, six non-distorted square patches can still be processed with
existing convolution techniques. Since projecting spherical contents onto six faces of
a cube can eliminate distortion for each face to a great extent, it is made possible
to adopt perspective-based methods with minimal effort. Moreover, as each face has
a reduced FOV, cubemap projection puts more focus on local objects compared to
equirectangular projection [74]. However, since each face is processed independently,
the discontinuity along edges is problematic for many applications. A common ap-
proach to alleviate this problem is through padding edges during the process [128] of
merging predictions back to a single output. However, while such an issue may not be
critical in certain tasks such as stylization and classification, the lack of consistency
between the output of each patch is more pronounced in depth regression. Recently,
methods for enabling rotation-equivariance in CNNs were proposed by Cohen [118].
However, since such equivariant architectures provide a lower network capacity, only
single variable regression problems were demonstrated. Inspired by [129], the state-of-
the-art method [117] incorporated distorted CNN filters to improve the performance
of fully convolutional networks with skip connections and showed impressive predic-
tions of equirectangular images. However, without any consideration of foreground
objects, the network will penalize small areas with a steep local gradient when regress-
ing the global gradient of the prediction, resulting in areas of interest such as humans
being frequently missing in the output. In our second improved network design, we
try to incorporate both equirectangular and cubemap projection to complement each
other, so that while the equirectangular prediction can provide a global context, the
proposed network can still yield accurate results for foreground objects.

4.2.2 Databases for 360◦ Images

Since the standard method to approach monocular depth estimation is to train a
model directly from paired RGB images and ground truth depth, the performance of
such supervised approaches cannot produce better results than the limits of its train-
ing data. With advanced imaging devices and depth sensors, high-quality databases
consisting of traditional perspective images are easily obtainable, for instance, KITTI
[62], NYUv2 [85], Make3D [70], etc. However, obtaining paired 360◦ data is not as
straightforward as using traditional imaging devices with calibrated color and depth
sensors such as Kinect to capture 2-dimensional contents. Using a stereo setup of
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Figure 4.3: The most used databases for perspective and omnidirec-
tional learning-based depth prediction.

two 360◦ cameras to calculate disparity is challenging due to the presence of occluded
regions [130]. In the case of omnidirectional images, both cameras will inevitably
include the other camera in the captured data. Recent scanning devices are capable
of acquiring databases that consist of paired 360◦ RGB and ground truth depth of
static scenes with improved quality, such as Stanford 2D-3D [120] and Matterport3D
[119].

However, existing methods fail to include any dynamic object in the scene. As
a result of a scanning and stitching scheme, trying to include dynamic foreground
objects in the captured data [120] [119] will lead to distorted and incorrectly compos-
ited images, as shown in Figure 4.1. [117] repurposed 3-dimensional model databases,
SunCG [121] and SceneNet [131], to render 360◦ synthesis-based RGBD images with
virtual cameras. However, a model trained with synthetic data does not necessarily
generalize well to real-world scenarios, due to database bias. As observable in Fig-
ure 4.2, a previous attempt to resolve this issue by inserting human models into the
existing synthetic database suffers from a severe domain bias from the real-world sce-
narios. However, because of the inability to include realistic human representation in
the existing omnidirectional RGBD database, the performance of all previous methods
is greatly limited when applied to real-world scenarios with humans.

4.3 Foreground-aware Data Augmentation

To produce a foreground-aware photo-realistic database for machine learning algo-
rithms, we explain our method of augmenting databases with realistic foreground
objects using an image-based approach in this section. The pipeline of our method
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is visualized in Figure 4.5. As shown in Figure 4.5, based on the observation that
360◦ images can circumvent challenges brought by perspective transformations in the
traditional 2-dimensional plane, we effectively composite color data of abundant and
easily obtainable 2-dimensional databases and rendered omnidirectional images with
z-buffer. We employ a Mask R-CNN network to predict pixel-perfect masks of the
dynamic foreground objects. With the acquired masks of interest, we can obtain per-
spective paired color and depth batches. With cubemap projections done before and
after compositions, we can composite with correct occlusions and distortions.

4.3.1 Scale-invariant Correspondence for 360◦ Images

In this section, we explain the novelty and feasibility of compositing existing 2-
dimensional RGBD databases onto equirectangular images.

We observe that it is difficult to establish a correspondence between color and
depth in the traditional 2-dimensional domain. We take perspective transformations
as an example and demonstrate them with Figure 4.4. During the process of "zooming
in" onto the target region (dashed box), the global color data changes continuously
while the depth of the target area stays the same, forming a many-to-one mapping.
It is particularly true in the real world: when we use binoculars to observe the same
object, even given the prior knowledge of an object’s average size, it is inherently
harder to estimate the distance without knowing the magnification.

On the other hand, the relation between color and depth in 360◦ images is scale-
invariant. While some perspective transformations such as cropping will make 360◦

images no longer spherical, rotation and zoom will not affect the global color repre-
sentation of the original image after down-scaling. Therefore, given the same object
with a determined distance, the appearance of the target region in 360◦ images should
remain consistent.

Based on this observation, we exploit such an advantage of omnidirectional images
by inversely compositing local regions onto them with regard to depth information. In
this work, we choose z-buffer to composite owing to its simple implementation, high
efficiency, and compatibility of occlusions.

4.3.2 Synthesizing RGBD Foregrounds

General Foreground Synthesis

To automatically acquire paired color and depth maps of a dynamic foreground object,
we can either capture with sophisticated RGBD sensors or take advantage of abundant
and easily obtainable existing databases in the traditional 2-dimensional domain. In
order to efficiently acquire highly accurate segmentation masks of the input data, we
adopt a Mask R-CNN model with a backbone of ResNet-101, trained with the COCO
database to predict per-pixel label masks. The strengths of per-instance prediction
and less complex post-processing are the main reason we choose Mask R-CNN over a
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simpler U-Net network. During prediction, our implementation predicts per-person-
instance masks at a near-real-time speed (5 fps) with high accuracy. Some examples
are shown in Figure 4.6. With acquired masks for areas of interest, we crop batches
from the input RGBD data accordingly.

Human Batch Synthesis

Since human as a dynamic foreground object shares both a high complexity in de-
formation and non-uniform depths, we choose humans to show the efficacy of our
approach. At the same time, humans have great importance in being one of the most
interested and common subjects to deliver the context of the image. By showcas-
ing accurate estimations of humans, we demonstrate the ability of our method to be
generalized to other foreground objects. In this work, we repurpose the PKU-MMD
database [132], which contains calibrated and synchronized RGBD video sequences.
This large-scale database includes motions of 51 categories performed by 66 distinct
subjects. It contains different views, sufficient intra-class variations, and adequate
classes of motions to ensure a robust prediction result.

4.3.3 Augmenting 360◦ Databases

360◦ Background Synthesis

Since paired real-world 360◦ RGBD databases with humans are not available to our
knowledge, to alleviate the difficulty of evaluating the accuracy between our and the-
state-of-the-art approaches, we use a similar strategy matching with [117] to render
paired and realistic omnidirectional RGBD images from the Stanford 2D-3D database
and the Matterport3D database captured with professional 360◦-capable scanning
devices. Specifically, a path tracing renderer with a virtual omnidirectional camera
is used to generate the samples. The light source is positioned identically with the
virtual camera. Omnidirectional depth maps with linear distances of each pixel are
generated with Z depth. To show the effectiveness of our method across different
domains and to benchmark the accuracy with synthetic 360◦ databases, identical
processes are brought out with the SunCG [129] and the SceneNet [131] as well.

Compositing Foregrounds and Backgrounds

Since the RGBD local batches are captured in the traditional 2-dimensional domain,
a direct composition will lead to distorted and unrealistic appearances in the 360◦

context. To cope with this challenge, both the RGB and depth map of each rendered
omnidirectional sample are projected onto a cube map through cubic projection. With
ground truth depth information of both foreground batches and background faces,
the composition is done through a highly efficient and effective Z-buffer, preserving
correct depth annotations and in-scene occlusions. To simulate real-world scenarios,
batches are randomly composited to lower halves of 4 surrounding cube faces, while
faces of the ceiling and the floor are not used during composition. Finally, a reverse
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Figure 4.6: Generated examples with the proposed method. From
left to right: rendered color images with original omnidirectional
databases, samples from an input human pose database, generated
omnidirectional images with humans, and corresponding depth maps.

cubemap projection is done to generate high-quality RGBD equirectangular samples
with dynamic foreground objects.

In this work, our proposed database consists of 25,000 realistic and 25,000 syn-
thetic equirectangular samples with synchronized color information and depth anno-
tations. Abundant variation is achieved through a sufficiently wide range of indoor
scenes as backgrounds, and a large human batch pool acquired in the previous step
as foregrounds.

4.4 Multi-output Regression for Foreground-aware Depth
Estimation

This section presents our proposed end-to-end learning model to estimate a depth
map from an equirectangular image. As shown in Figure 4.7, We use two fully-
convolutional encoder-decoder structured networks, RectNet and MaskNet to regress
depth and predict masks of local regions respectively from a given RGB input. The
RectNet that resembles the design in the literature can regress depth with changing
filters in an omnidirectional context. To take advantage of the generated database with
dynamic foreground objects, we leverage the generated masks of interesting areas to
train the auxiliary MaskNet. By calculating both local depth loss and global loss, our
network further improves the consistency of local predictions.

4.4.1 Network Structure

The proposed network approaches dense depth estimation from monocular RGB im-
ages and shares an encoder-decoder design that progressively downscales and upscales
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Figure 4.7: An overview of the proposed depth estimation network.
The weight of the auxiliary MaskNet is fixed when training the depth

estimation model RectNet [117].

Figure 4.8: The architecture of the fully convolutional RectNet for
depth regression. the encoder consists of two preprocessing blocks
(yellow and blue) and a downscaling block (teal), followed by two
increasing dilation blocks (green and grey), and the decoder contains
three up-prediction blocks, followed by a prediction layer. With 360◦
degree color images in equirectangular format as the input, it predicts

the corresponding depth map.

to the target representation through regression. Skip connections similar to ResNet
structures can help to preserve the information from a higher level during regression
while preventing vanishing gradient. When applied to equirectangular images, in-
spired by [129], we incorporate rectangular filters with changing sizes according to
rows of the input to cope with the characteristic that the density of information, or
namely the distortion level changes along the vertical axis but invariant along the
horizontal axis. In addition to L2 depth loss to regress the prediction, a neighbor-
hood smoothness regularization term [117] is also calculated to improve the global
consistency of the output.

However, small regions with steep gradient changes usually got smoothed out dur-
ing the regression and missing in the prediction. This can be observed in Figure 4.11.
Predictions of humans severely suffer from this issue. To tackle this limitation, we
introduce an auxiliary network, MaskNet, to calculate the local depth loss of humans.
The MaskNet network that predicts masks of foreground objects from equirectangular
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Figure 4.9: The architecture of the fully convolutional auxiliary
MaskNet. The encoder of our network shares the same structure of
ResNet-101 [133], followed by a decoding process with two upsampling

layers to predict the mask of the target object.

RGB inputs has the architecture shown in Figure 4.9. It is trained with the COCO
database and finetuned with generated equirectangular RGB images with foreground
objects and corresponding segmentation masks to minimize a cross-entropy loss. The
weight is fixed during training the depth estimation model.

4.4.2 Loss Functions

We train the depth estimating network in a completely supervised fashion with the
input of the generated foreground-aware RGBD database. To address the problem of
vanishing local gradients for areas of interest while keeping the desirable properties
of the original RectNet like consistent global predictions, the total loss of our model
consists of three different terms:

Ltotal =
∑
i

(αiLdepth + βiLsmooth + γLlocal),

while the α, β and γ are the weights for each loss term. Since the loss is calculated
under different scales i, the estimations of lower scales are interpolated with nearest
neighbors are concatenated together to form the final output. The depth loss Ldepth

is regressed by minimizing the least square errors between the groudtruth depth maps
Dgt and the predicted depth maps Dpred:

Ldepth = Dgt −Dpred
2.

The smoothness loss is calculated by ∇Dpred
2 to minimize the gradient of the pre-

diction. In order to calculate the local depth loss, we pass the equirectangular color
image Cinput through the trained auxiliary network M to obtain the mask of human
instances Mhuman = M(Cinput), so we can calculate the local depth loss with

Llocal = Dpred ⊗Mhuman
2.
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By minimizing the local depth loss, we can ensure that spatially closer pixels within
the same area of interest would have closer depth values.

4.4.3 Experimental Evaluation

In this section, we first evaluate our data augmentation method by presenting quan-
titative comparisons between models trained with existing omnidirectional databases
and our generated databases. We then verify the performance of the proposed network
by comparing it to the state-of-the-art omnidirectional depth estimation algorithm.
Finally, to evaluate the effectiveness of our method in real-world scenarios with hu-
man objects, we offer comparative qualitative results of estimating unseen images by
different methods.

Training Details

Figure 4.10: Learning curves of models respectively trained with
original synthetic, original realistic, proposed synthetic and proposed

realistic databases.

For fair comparisons, we randomly acquired 25,000 samples from existing syn-
thetic omnidirectional databases to train models as the existing synthetic database,
and then we acquired 25,000 samples from existing realistic omnidirectional databases
to train models as the existing realistic database. We respectively generate 25,000 syn-
thetic samples and realistic samples augmented with human objects to train models
as our proposed databases. Each 512 x 256 sample has color information and cor-
responding ground truth depth annotation. We randomly split samples from each
database into training and validation databases with a ratio of 80% and 20%. All net-
works in this paper are implemented with PyTorch [134] on an Nvidia RTX 2080Ti
graphic card and trained with Adam optimizer [135], Xavier initialization [136], and
a learning rate of 2e-4. Training parameters of our networks are [α1, α2, β1, β2, γ] =

[0.482, 0.245, 0.121, 0.061, 0.090], while parameters of training previous RectNet mod-
els are [α1, α2, β1, β2] = [0.535, 0.272, 0.134, 0.068]. The same quantitative metrics
from the literature [75] [117] are used for evaluation. During experiments, predicting
a single image approximately costs 100 ms with the same setup.
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Quantitative Results

Table 4.1 presents the results of the state-of-the-art models respectively trained with
existing synthetic and realistic databases and our proposed databases. We observe
that when tested on unseen samples with human objects, networks trained with our
proposed databases outperform the existing ones. The increased performance in ac-
curacy against previous methods attributes to more accurate estimations of local
human regions, as can be observed in Figure 9. By further quantitatively evaluating
the accuracy of estimations between our proposed network and the state-of-the-art
models, we can observe the inferior performance of previous approaches as expected
in Table 4.2. Depth estimations of local human regions are further refined with our
proposed network.

Qualitative Results

To qualitatively evaluate our models’ ability to generalize to unseen data, we further
acquire and augment samples from the SunCG and the Matterport3D that come from
other locations different from training databases. As we can observe in Figure 4.11 and
Figure 4.12, our models perform better to estimate the depth of both synthetic and
realistic scenes with a human. While previous models yield human depth estimations
that are blended with the background and have a blurred edge, our models can predict
much clearer and human-shaped results. It is worth mentioning that although all
omnidirectional samples used in the experiment only cover indoor settings, our method
works with outdoor cases as well.

After observing generated samples, we believe there are many challenges left to
overcome. First, even though our method can augment foreground objects, we do not
take lighting into consideration during the process. This unnaturalness may lead to
less robust estimation in certain scenarios (e.g. scenes with very high brightness).

4.4.4 Ablation Study

In Figure 4.13, we compare the accuracy of depth estimations for local regions under
different configurations. Specifically, we compare using original data and proposed
data to train only the depth estimation network without the auxiliary MaskNet at first
to validate the effectiveness of our data generation method. We then use augmented
data to train depth estimation networks with the auxiliary MaskNet, and verified
that the local depth loss can successfully improve the consistency of estimated depth
within areas of interest. As we can observe in Figure 4.13, our method significantly
outperforms the state-of-the-art in local depth estimation.
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Figure 4.13: Estimated depth information of local regions with dif-
ferent configurations. An ablation study shows that using our aug-
mented database can improve the accuracy of local regions, and the
proposed network shows an improved consistency with clearer bound-

aries.

4.5 Multi-view Learning for Foreground-aware Depth Es-
timation

4.5.1 Network Structure

We explain the proposed foreground-aware bi-projection-based depth prediction method
for omnidirectional images in this section. We use a multi-branch end-to-end struc-
ture that incorporates two different projections to achieve a more consistent global
context and detailed local foreground object features. The proposed architecture is
shown in Figure 4.14. In particular, the first branch learns regressing depth informa-
tion from a single omnidirectional image in the format of equirectangular, providing
surrounding information through a wider FOV. As directly using equirectangular im-
ages usually causes blurred prediction for local objects with steep gradient changes,
the second branch uses cubemap projection to make it more effective to learn local
features. With a narrower FOV, cube faces provide more insights into the shape and
boundary of foreground objects. Since semantic segmentation and depth prediction
are two tasks usually learned together to reveal the scene layout [53] [137] [138], we
can improve the accuracy of depth prediction through this foreground-aware network.

For the equirectangular branch, it regresses dense depth information from om-
nidirectional images with an encoder-decoder structure by progressively downscales
and upscales to the depth output. Since skip connections are used to preserve fea-
tures from higher levels, we adopt Resnet as the encoder of the network. We take
advantage of a distorted CNN filter [129] that changes filter sizes with regard to the
coordinate on the equirectangular image to improve the effectiveness when training
directly on spherical images. We use a traditional L2 loss to calculate the depth loss



66 Chapter 4. Observing the Regional: Foreground-aware 360◦ Depth Prediction

F
ig

u
r
e

4.14:
T

he
proposed

bi-projection-based
foreground-aw

are
dense

depth
prediction

m
ethod

for
om

nidirectionalim
ages.

W
e

first
transform

sphericalcontents
into

equirectangular
and

cubem
ap

projection.
For

the
equirectangular

projection,w
e

directly
regress

depth
m

aps
w

ith
a

distorted
C

N
N

kernel.
For

the
cubem

ap
projection,w

e
sim

ultaneously
predict

the
sem

antic
segm

entation
and

depth
m

aps.
A

fter
calculating

an
additional

local
loss

for
foreground

objects,
w

e
m

erge
the

cubem
ap

depth
m

ap
w

ith
the

equirectangular
one

to
achieve

consistent
globalprediction

w
ith

sharp
and

detailed
localregions.



4.5. Multi-view Learning for Foreground-aware Depth Estimation 67

and a smoothness regularization term [117] to improve the consistency of the output.
We further introduce spherical padding and a convolution module at the end of

both branches to ensure a consistent merged output. While cubemap projection does
not quite suffer from the distortion when projecting spherical information onto a 2-
dimensional plane, it instead introduces discontinuity at the boundaries of each face.
To alleviate this problem, we adopt a spherical padding technique [74] that increases
the FOV when rendering each face and connects them afterward to address the con-
sistency issue. After two branches produce respective dense depth predictions, we
unify both branches by concatenating them together and pass through a convolution
module described in [139].

4.5.2 Loss Functions

We further utilize the binary mask for foreground objects prepared in the previous
step and propose a depth/semantic segmentation multi-task learning scheme for the
cubemap branch to strengthen the loss for foreground objects with a foreground object
loss.

Lforeground = Dcubic depth ⊗Mforeground
2,

and thus the overall loss function for the network is

Ltotal =
∑
i

(αiLoutput depth + βiLsmooth + γLforeground),

while the α, β and γ are the weight coefficients for each loss term.

4.5.3 Experimental Evaluation

Implementation Details

For generating the foreground-aware database, we randomly selected 25,000 synthetic
and 25,000 realistic omnidirectional image pairs from existing databases and split them
into training and validation sets with a ratio of 80% and 20%. We then composite
foreground objects (i.e. humans) onto the acquired samples with a resolution of 512 x
256. We implement the aforementioned network structure with PyTorch[134], Adam
optimizer [135], Xavier initialization [136], and a learning rate of 2e-4. The training
process is conducted on an Nvidia RTX 2080Ti graphic card. The parameters used
for training are [α1, α2, β1, β2, γ] = [0.482, 0.245, 0.121, 0.061, 0.090]. We use the same
metrics from the previous work [75] to evaluate our method. At runtime, predicting
images with the same resolution can achieve real-time performance.

Experimental Results

We quantitatively and qualitatively evaluate our proposed method in this section. In
Table 4.3, we present the result of depth prediction when compared to the state-of-the-
art omnidirectional method, [117]. The upper column showcases the effectiveness when
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Table 4.3: Quantitative comparison against state-of-the-art meth-
ods.

Metrics Database OmniDepth [117] Ours

Abs Rel ↓ Synthetic 0.3789 0.2279
Sq Rel ↓ Synthetic 0.2893 0.2134
RMSE ↓ Synthetic 0.6878 0.5999

RMSE log ↓ Synthetic 0.5225 0.2257
δ < 1.25 ↑ Synthetic 42.45% 78.41%
δ < 1.252 ↑ Synthetic 79.26% 92.85%
δ < 1.253 ↑ Synthetic 92.57% 97.13%

Abs Rel ↓ Real 0.3190 0.2246
Sq Rel ↓ Real 0.2180 0.1727
RMSE ↓ Real 0.5993 0.6042

RMSE log ↓ Real 0.4788 0.2427
δ < 1.25 ↑ Real 69.88% 75.37%
δ < 1.252 ↑ Real 84.54% 91.73%
δ < 1.253 ↑ Real 91.50% 96.66%

applied to the synthetic domain, while the bottom column demonstrates its efficacy
in real-world scenarios. We can observe that our method shows favorable performance
with improved accuracy across the board against the existing method when bench-
marking with accuracy metrics. We believe that the increased accuracy attributes to
the bi-projection network architecture in addition to the semantic segmentation task
in the cubemap projection branch. This is qualitatively verified through Figure 4.15
and Figure 4.16, as we can observe that our model generalizes to unseen data with
foreground objects and yield satisfying depth prediction.

4.6 Conclusion of the Chapter

We have presented a data augmentation method to generate high-quality equirectan-
gular databases with paired color and ground-truth depth annotations by repurposing
abundant and easily obtainable 2-dimensional RGBD databases. With this database,
we further introduced and implemented an auxiliary network that calculates local
depth loss to resolve an issue that small regions of interest are frequently smoothed
out during optimizing global gradients. We take humans, a crucial subject in 360◦

contents, as an example to show the efficacy of our approach. We showed improved ac-
curacy of our approach compared to the state-of-the-art technique. We then present a
foreground-aware bi-projection-based depth prediction method for omnidirectional im-
ages. The proposed architecture produces consistent global depth prediction with the
equirectangular projection while enforcing local detailed features through the cube-
map projection. An additional foreground loss acquired through a multitask learning
approach of semantic segmentation complementarily provides sharper boundaries of
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Figure 4.15: Qualitative comparison of foreground estimations
against the state-of-the-art method when tested on realistic images.

predicted foreground objects. With quantitative and qualitative evaluation, we suc-
cessfully verified the effectiveness of the proposed method. We believe the ability to
accurately predict depth information for omnidirectional images can facilitate a wide
range of applications such as 3-dimensional reconstruction and virtual reality. We
believe that the ability to estimate depth for foreground objects in 360◦ images can
benefit a wide range of applications such as navigation in robotics and augmenting
virtual objects with occlusions.

Currently, our data augmentation method is based on the premise that both 2-
dimensional and 360◦ data are captured with similar extrinsic parameters (e.g. cam-
eras are aligned horizontally, positioned at average eye-level height) and lighting con-
ditions, while it is true for most data captured in lab conditions, its application for
in-the-wild images is limited. Furthermore, our approach works for both indoor and
outdoor settings by compositing synthetic/captured omnidirectional databases. Nev-
ertheless, for outdoor settings, a higher dynamic range of luminosity and sunlight’s
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ambient IR will render capturing RGB and depth information inherently difficult. For
future work, we aim to explore generating samples with different lighting conditions
with GANs to improve the robustness of depth estimation.
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Chapter 5

Comprehending the Global: 360◦

Depth Prediction in the Wild

In this chapter, we continue zooming out and further broaden the scope to understand
the global environment of mixed reality. We propose a novel approach of data aug-
mentation and depth estimation to extend the capability of 360◦ scene understanding
from only indoor environments to all situations [24]. We are the first to propose uti-
lizing abundant online 360◦ videos available on the internet to generate a large-scale
database, Depth360, that comprises a wide range of conditions. We further proposed
an end-to-end multi-task deep learning network to effectively learn from the proposed
database. With the ability to estimate high-quality depth information of the global
context of omnidirectional images, we implement an application to showcase how scene
understanding can help improve mixed reality.

5.1 Introduction

Visual reasoning in the context of omnidirectional images has gained increasing pop-
ularity in both academic and industrial communities during the past few years. By
providing rich information about the environment with a large field-of-view (FOV),
predicting dense depth maps from a single 360◦ image shows wide applicability and
facilitates applications that require accurate understandings of the context, such as
scene reconstruction [140] and autonomous navigation [115]. However, inferring depth
from a monocular image is a challenging and ill-posed problem due to uncontrolled
extrinsic, ambiguous scales, and varied settings. Recently, data-driven deep learning
methods [73] have presented significant potential in this field.

Despite learning-based methods having been extensively studied within the context
of perspective images, omnidirectional format presents challenges in both aspects:
data preparation and depth estimation algorithm. On the one hand, large-scale 360◦

training data is difficult to collect. For synthesis-based methods, the cost to create
large-scale models that resemble real-world ones with abundant settings is excessively
high [141], and the diversity gap between synthetic samples and real data leads to
less accurate results [142]. For capturing-based methods, using dual 360◦ cameras
for stereo-capturing will introduce mutual occlusion. Specialized scanning devices
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Figure 5.1: We present a method for generating large amounts of
color/depth training data from abundant internet 360◦ videos. After
creating a large-scale general omnidirectional dataset, Depth360, we
propose an end-to-end two-branch multitasking network, SegFuse to
learn single-view depth estimation from it. Our method shows dense,

consistent and detailed predictions.

(e.g. Matterport [119]) produce dense datasets but are limited to indoor use due to
their working principle. Depth maps produced with laser scanners (such as LIDAR
[143]) suffer from self-occlusion albeit being the main source for outdoor settings.
Most datasets are only captured under specific scenarios (e.g. atop a driving car
[144]). On the other hand, existing learning-based approaches cannot effectively take
advantage of 360◦ image datasets. The majority of depth estimation methods [73] are
designed for perspective cameras with narrower FOV. Due to the spherical nature of
the content, projecting to a 2D image introduces irregular distortions and thus hinders
effective learning [145]. Even though there are a few methods [117] [74] proposed with
distortions in mind, they only focus on indoor settings due to the unavailability of
outdoor datasets. As a result, they show sub-optimal performance under general
cases.

In this chapter, we first tackle the problem of limited datasets by exploring the
use of the plenteous source of data: 360◦ videos from the internet that are captured
with a moving hand-held omnidirectional camera. We propose a test-time training
method that utilizes a learning-based prior to synthesizing plausible depth maps for
each consistent 360◦ video. By leveraging the rich information that is only presented in
omnidirectional formats, we propose to use the output of structure-from-motion (SfM)
and multi-view stereo (MVS) methods to calculate a novel geometric consistency based
on a geometric spherical disparity model. We also propose to use optical flow [146] to
encourage temporal consistency and establish multiple constraints for each pixel that
ensure a convincing output. With established constraints, we fine-tune a pre-trained
model by updating the parameters according to the calculated geometric and temporal
losses to produce a more consistent output for a particular sequence. During dataset
creation, our test-time training method takes preprocessed video sequences as input
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and generates a geometrically and temporally consistent dense depth map for each
frame. To our knowledge, our large-scale dataset, Depth360, is the first to use internet
omnidirectional videos for achieving monocular depth estimation from single 360◦

images. To benchmark the accuracy of data generation, we propose using rendering-
based methods to further generate a photorealistic synthetic dataset, SynDepth360.
With the unlimited training data with diverse conditions, we seek to learn depth
estimation with high accuracy and generalization.

We then propose an end-to-end neural network architecture, SegFuse, to learn
the single-view depth estimation of omnidirectional images that generalize well with a
wide range of settings by mimicking the human eye. While videos usually provide more
cues for depth calculation and facilitate dataset creation, lengthy optimization for in-
dividual scenes does not achieve as good generalization and practicality compared to
single-view depth estimation. We believe that compared to indoor depth maps with
more uniform distributions and relatively universal ranges, more challenging varia-
tions of outdoor images, i.e. unsymmetrical depth distributions (sky and ground) and
distinct depth ranges between different scenes, lead to ineffectively learning processes
and generalization for existing methods. To cope with such problems, we propose a
multi-task learning framework that adopts a bi-projection fusion scheme: a periph-
eral branch that uses equirectangular projection for depth estimation and a foveal
branch that uses cubemap projection for semantic segmentation. While equirectan-
gular projection can provide consistent global context, cubemap projection gives more
local details with a narrower FOV. With the peripheral vision to perceive the depth
of the scene and foveal vision to distinguish between different objects, our method
can successfully learn a smooth global depth while maintaining details in local re-
gions. Compared to the method [74] with a similar structure, SegFuse uses multi-task
learning to exploit semantics in complex depth distributions, and achieve significantly
improved performance in outdoor settings.

By applying the generated training data with diverse conditions to multiple state-
of-the-art learning-based omnidirectional depth estimation methods, our experimental
results show that our method outperforms existing methods with more consistent
global results and sharper local estimations.

To summarize, our contributions are as follows:

1. To solve the unavailability of a general omnidirectional dataset with dense depth
maps, we are first to propose to utilize omnidirectional video in the wild to
generate a large-scale dataset, Depth360. By exploiting unique temporal and
geometric consistencies of 360◦ videos with a spherical disparity model, we use
test-time training to generate convincing depth maps.

2. We propose an end-to-end two-branch multi-task architecture called SegFuse
that estimates depth from a single-view 360◦ image input by mimicking the
human eye. The peripheral branch regresses global depth estimation while the
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foveal branch estimates local semantic segmentation. By fusing the global con-
text and local details, our design ensures a sharp and consistent depth prediction
under challenging cases.

3. To validate the accuracy of the proposed dataset and evaluate the effectiveness
of our multitasking method, we perform an extensive evaluation against state-of-
the-art omnidirectional datasets and methods and present a better quantitative
and qualitative performance.

5.2 Related Work

5.2.1 Monocular Depth Datasets

One of the major issues in learning-based single-view depth estimation is the unavail-
ability of data. For perspective images, most supervised depth-estimation methods
are trained on a few standard datasets (e.g. NYU [85]) due to the difficulty of ac-
quiring ground truth depth maps. Capturing-based methods often utilize RGB-D
sensors and laser scanning (e.g. LIDAR [144]). To improve data availability and ease
of acquisition, several efforts have been made. Godard et al. [75] use multiple views
of a scene as a supervisory signal, but these approaches usually require two input
images at test time [147]. Mayer et al. [148] use a synthetic dataset, but the domain
gap results in sub-optimal performance in real-world scenarios and requires further
domain adaptation [122]. Using internet images [149] and videos [150] to calculate
pseudo ground truth with structure-from-motion and multi-view stereo shows great
performance but is only explored in perspective context.

When it comes to omnidirectional depth maps, not only capturing-based meth-
ods are greatly limited, but also the existing perspective-based approaches are less
effective, resulting in the scarcity of outdoor datasets. Existing omnidirectional sen-
sors with customized arrays suffer from strong self-occlusions, leading to missing or
sparse information at the bottom of the sphere. Using multiple monocular cameras
as a stereo setup (i.e., 3D VR cameras) to calculate disparity is also problematic
due to mutual occlusion [151]. Using domain adaptation for synthetic data requires
both large-scale 3D models with great variations and corresponding similar 360◦ color
ground truth. Most concurrent works [117] [74] either use synthetic datasets (i.e.,
PanoSunCG [152]) or 3D scanned datasets (i.e., Matterport3D [119], Stanford 2D-3D
[120], Pano3D [153]). The former is generated with 3D models and a virtual omnidi-
rectional camera without domain adaptation, and the latter ones are captured with
specialized equipment and post-processed. Both suffer from no dynamic foregrounds,
further limiting their usefulness in real-world scenarios [114]. Zhu et al. [142] pro-
pose to use physics-based rendering to generate synthetic outdoor panoramas, but the
diversity gap between synthetic samples and real data leads to less accurate results.
Therefore, taking advantage of an increasing number of shared online omnidirectional
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videos, we propose a pipeline to utilize rich information in the wild to generate a
large-scale dataset.

5.2.2 Monocular Depth Estimation for Perspective Images

Predicting depth from monocular color images is an important task in understanding
3D scene geometries [154]. An accurate estimation can benefit various applications
such as autonomous driving [144] and graphics rendering [155]. Traditional methods
of monocular depth estimation heavily rely on probabilistic graphical models with
hand-crafted local features and constraints (e.g. MRF) [156]. With the advances
in deep learning algorithms, recent learning-based approaches [124] [157] [158] show
significant improvements in accuracy.

A standard approach to learning an implicit relation between color and depth is
to train models with collected RGB images and ground truth depth maps. Eigen
et al. [124] propose multi-scale networks to refine coarse depth with local details.
This two-scale strategy is further refined to predict high-resolution depth [158]. A
fully convolutional architecture with a novel up-projection module proposed by [73]
improves the output accuracy. Cao et al. [159] propose to solve depth regression in a
classification fashion. Another direction for improving the output quality is to combine
graphical models with the use of CNNs, such as incorporating conditional random
fields in the form of a loss function into the depth estimation task [72]. However,
when directly applying perspective models to 360◦ images, an inferior performance is
observed due to the lack of global consistency and incorrectly modeling the projection’s
distortion [117].

5.2.3 Monocular Depth Estimation for Omnidirectional Images

As omnidirectional cameras have become more efficient and accessible, the interest
in 360◦ media has surged on the internet owing to novel applications such as virtual
reality [160] [13] and mixed reality [161]. For single-view depth estimation, while a
large body of research exists for perspective images, scarce work has been done to
address this problem for spherical images. The most apparent issue is the distortion
introduced when projecting the 3D spherical information onto the 2D plane. Although
rotation equivariant CNNs [162] and graph-based learning [163] with spherical cross-
correlation directly learn from 3D spherical signals, such equivariant architectures
define convolution in the spectral domain and provide a lower network capacity, hin-
dering applicability in generative tasks such as monocular depth estimation. To apply
deep learning approaches to omnidirectional content, most approaches are proposed
using two projection formats, cubemap, and equirectangular projections.

While cubemap projects spherical signals onto 6 faces of a cube, and thus enables
directly feeding non-distorted images into a CNN, the discontinuity along boundaries
is problematic when trying to merge results back into a spherical image. A common
solution is using cube padding [164] to aid the network in merging estimations for
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each face into a full omnidirectional output. This method is effective when applied
to single-view depth estimation for indoor scenes [74] with a relatively uniform depth
distribution and other tasks such as stylization [128] and classification [165]. However,
these methods are less effective when each face has wildly changing depth ranges
in outdoor scenarios [166]. Since each face only includes very limited information
about a local region, dramatically different appearances and the ambiguity of depth
scales usually result in distinct estimations, limiting the scalability of such approaches.
Recent works using diverse division schemes show improved predictions for indoor
samples [167]. However, slice-based methods that exploit relationships of vertical
patches [168] also report discontinuities for outdoor cases.

To make the network efficient and directly aware of the distortion in omnidirec-
tional images, work resorted to using equirectangular projection with distorted filters
[117] and dilations [169]. However, the effectiveness of these methods is limited. As the
layers deepen, non-linearly distributed information across an equirectangular image
got lost (e.g. consistency across the sphere). Although this problem is alleviated by a
kernel transformer [170] that uses parameterized functions to preserve cross-channel
interactions, the model size is still limited. While using equirectangular projection
can generate more consistent global prediction due to its wider FOV, small regions
with a steep local gradient when regressing the global gradient are harder to learn
[114]. Wang et al. [74] and Jiang et al. [171] use a fusion scheme that combines
the depth maps estimated with equirectangular and cubemap projections for sharper
depth estimation. Although it presents improved accuracy for indoor settings, the
disadvantage of limited scalability remains [168]. Instead, we purpose an architec-
ture that fuses a cubemap branch for semantic segmentation with an equirectangular
branch for depth estimation. Considering that regressed depth maps for different faces
are hard to balance when training with outdoor samples, semantic segmentation can
serve to inform the global depth estimation of the local details without the problem
of balancing scales between each local view.

5.3 The Depth360 Dataset

We propose the world’s first generated large-scale dataset Depth360 that utilizes 360◦

videos in the wild to solve the unavailability of a general omnidirectional dataset
with dense depth information. We first preprocess a video sequence with an SfM and
MVS approach to establish quality frame groups that facilitate computing constraints
of the sequences. With a horizontal spherical disparity model, we propose novel
temporal and geometric consistencies that are unique to 360◦ videos. By incorporating
constraints into test time training through backpropagation, we generate convincing
dense depth maps for the corresponding sequence. The generation process is shown
in Figure 5.2, and some examples are shown in Figure 5.3.
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Figure 5.3: Examples of generated RGB/depth pairs. The color im-
ages are video frames acquired from the internet, and the correspond-
ing depth maps is generated through our test-time training method.

5.3.1 Data generation with Test-time training

We propose a test-time training method that first estimates plausible dense estima-
tions utilizing a learning-based prior, and then iteratively fine-tines the parameters
during test time with unique constraints established from a certain 360◦ sequence to
generate accurate depth output. Since 360◦ videos gathered from the internet usually
suffer from unconstrained extrinsic and different intrinsic, existing methods often fail
to show satisfying performance for dataset creation. On the one hand, depth produced
by reconstruction-based methods is usually sparse and erroneous due to distortions.
On the other hand, directly applying learning-based methods for frames independently
usually results in inconsistent estimation and sub-par accuracy due to the domain gap
between perspective and equirectangular formats. With the proposed test-time train-
ing method, we take preprocessed video sequences as input and generate geometrically
and temporally consistent dense depth maps for each frame.

We calculate a geometric loss between corresponding frames reprojected from the
estimated depth map and stereo pairs’ disparity, in addition to a temporal loss that
penalizes the error between flow-based and depth-based projections. In each iteration
of fine-tuning a pre-trained depth estimation network, we first generate depth maps for
multiple frames with the current network. We then update the parameters according
to the calculated geometric and temporal losses to ensure its weight can produce a
more consistent output for a particular sequence (Figure 5.2).

Preprocessing. We exclude dynamic foreground objects from the frames for bet-
ter calculating camera extrinsic and establish geometric constraints for the respective
sequence. Since people are usually the most common dynamic foreground objects in
perspective videos [155], we found this remains true for omnidirectional videos in the
wild as well.

We first use OpenVSLAM [172], an open-source visual SLAM framework, to esti-
mate the pose of the camera (r, t) and the distance b between frame pairs. We then use
an off-the-shelf SfM pipeline COLMAP [173] to acquire sparse depth maps DRecon.
To improve pose estimate for videos with a strong motion, we apply Mask R-CNN [52]
to obtain static segmentation for more reliable feature point extraction and matching.
During this process, we automatically filter out videos with a static viewpoint and
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vertical motions with estimated poses since they are more challenging in establish-
ing the geometric constraints, and group the remaining videos into consistent short
sequences S.

Spatial adjustment. Since learning-based and reconstruction-based methods
are independent of each other and both are scale-invariant, we need to first adjust the
scale to match the output before establishing geometric constraints. We achieve this
by multiplying all estimated camera translations for a single sequence with a scale
factor to match the scale of learning-based depth estimations. For sequence Si with j

frames, the scale factor si is calculated as:

Si =
∑
j

DNN
j (x)

DRecon
j (x)

/j|DRecon
j (x) 
= 0 (5.1)

where the D(x) is the depth value at pixel x yielded by the learning-based prior before
test-time training. The updated camera translation is now t̂i = si · ti.

While it is usually impossible to create aligned stereo pairs from unconstrained
perspective videos due to random camera extrinsic, omnidirectional images have the
unique feature of rotation-invariance. For short 360◦ sequences with minimal vertical
movements, we can create aligned left-right stereo image pairs by adjusting the ren-
dering camera rotation to r̂ so that the trajectory of frame centers stays parallel to
the camera translation t̂. This process is demonstrated in Figure 5.4.

Geometric loss. To calculate the geometric loss from adjusted left-right image
pairs (j, k) with a baseline b, we use a modified spherical disparity model from [145].
For each point p at (x, y, z) in Cartesian coordinate, we use longitude φ and latitude θ

in spherical polar coordinate to describe the corresponding point (Figure 5.4). In this
sense, the radial distance r to a certain point is

√
x2 + y2 + z2, and the horizontal

disparity is defined as δ = (φj−φk, θj−θk). Since the baseline b = (0, 0, dz) is acquired
from the previous step, the disparity is now δ = (∂φ∂z ,

∂θ
∂z ). The transformation between

spherical and Cartesian coordinates is omitted to simplify the notations.
To render a target frame k̂ from the source frame j, each pixel p = (φ, θ) on the

equirectangular image is a function of the baseline b and the radial distance r. Since
we already have the generated depth map DNN

j (p) for frame j, we can compute the
target frame k̂ with a function:

k̂(p) = Γj→k̂(D
NN
j (p), bj→k, j(p)) (5.2)

Considering the image acquired from online videos are usually not perfect stereo
pairs and include dynamic foreground objects, errors often got amplified at certain
regions (e.g. top and bottom) on equirectangular projection due to stronger distortion.
To alleviate this problem, we further adopt a weight matrix M(p) = |sin(φ)||sin(θ)|
that assigns different weights for each pixel and aggregates the loss with regard to the
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distortion level when calculating the geometric loss:

Lgeometric
j→k =

∑
p

||Mk̂p−Mk(p)||2 (5.3)

Temporal loss. Optical flow is a popular option to check short-term consistency
in learning-based video processing for its capability of describing the same scene points
in successive frames [128]. Since depth-estimation networks estimate depth maps
independently, the result for a video is usually unstable and inconsistent. To solve
the inconsistency between frames of a 360◦ video, for all frame pairs (j, k) in sequence
Si, we further calculate a dense optical flow fj→k to ensure a temporal consistency
during test-time training.

It is more suitable to establish short-term and long-term consistency for omnidirec-
tional videos compared to unconstrained perspective videos due to two reasons. First,
bad alignment of frames is challenging to cope with for perspective videos while spher-
ical videos can be easily calibrated with simple rotations. Second, while the problem
of occlusion remains, objects exiting and re-entering the frame are significantly less
prominent in equirectangular videos, making the long-term consistency more reliable.
To account for distortions of equirectangular projection, we use a modified version of
FlowNet2 [146], OmniFlowNet [174] with a distorted CNN kernel.

For pixel p = (φ, θ) on a source equirectangular image j, the corresponding pixel
p̃ on the target frame k̃ is calculated by:

p̃ = p+ fj→k(p) (5.4)

where f denotes the optical flow between two frames. We compute the target frame
k̃ based-on flow with function F :

k̃(p) = F
j→k̃

(fj→k(p), j(p)) (5.5)

Similarly, the temporal loss is calculated for each pixel with:

Ltemporal
j→k =

∑
p

||k̃p− k(p)||2 (5.6)

Optimization. We then fine-tune the network weights with the combined loss
Lj→k between frame pairs through backpropagation for 10 epochs:

Lj→k = Lgeometric
j→k (p) + Ltemporal

j→k (p) (5.7)

The overall loss is a sum of the geometric loss and the temporal loss calculated over all
pixels in video frames, and the network parameters are initialized using a pre-trained
network [175] trained on the Mix 5 dataset [176]. To reduce the computational cost of
computing dense optical flow for image pairs, we calculate the flow between consecu-
tive frames for short-term consistency and left-right pairs for long-term consistency.
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5.3.2 Implementation Details

To create the general dataset Depth360, we use the test-time training method to
generate convincing depth maps from omnidirectional videos in the wild. We first
gathered equirectangular video sequences from the internet that are captured with
a hand-held omnidirectional camera. After filtering out samples with strong motion
blur, post-editing, and texture-less scenes, we used 30 clips to produce corresponding
depth maps. We then fine-tune the weight of the same pre-trained network for each
sequence with the geometric and temporal loss using standard backpropagation. By
generating consistent depth maps for each sequence with fine-tuned networks after
10 epochs, we create a dataset of paired color images and depth maps with a size of
30,000. Several examples of our generated samples are shown in Figure 5.3.

5.3.3 The Benchmark Dataset

To benchmark the effectiveness of the test-time training method and accuracy of the
Depth360 dataset, we propose using rendering-based methods to generate a small-scale
synthetic dataset via 3D models and virtual cameras. This additional SynDepth360
dataset is motivated by the challenge to directly acquire the ground truth of the
internet videos. While the large-scale Depth360 dataset is advantageous to train end-
to-end models for single-view depth estimation, the rendered small-scale outdoor 360◦

synthetic dataset with diverse settings is helpful for future research, which we will
release together with the Depth360.

5.4 SegFuse: A Multi-input Multi-output Learning Net-
work

Combining the advantages of a more consistent global context and sharper local de-
tails, we propose an end-to-end two-branch multitask learning network called SegFuse.
It estimates depth from a single omnidirectional view by mimicking the human eye,
as shown in Figure 5.5. In particular, the upper branch regresses depth maps with
equirectangular projection, resembling human’s peripheral vision to perceive depth,
and the lower branch that estimates semantic segmentation with cubemap projection
mimics foveal vision to distinguish between different local objects.

We justify our network design from two aspects. Structure-wise, equirectangu-
lar projection is capable of capturing global context but the distortion and a larger
FOV restrict its effectiveness against local regions, while cubemap projection pro-
duces sharper boundaries for local objects but introduces inconsistency between faces.
Objective-wise, since semantic segmentation and depth estimation are two tasks usu-
ally jointly learned to reveal the scene layout and object shapes [53] [137] [138], while
semantic segmentation is more robust to scale changes, we design our two-branch
multitasking network that takes advantage of both global context and local details to
learn single-view estimation on a more general omnidirectional dataset.
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5.4.1 Network Structure

The peripheral branch. Our peripheral branch regresses a dense global depth
estimation from a single view equirectangular image. Its encoder-decoder structure
progressively downscales and upscales to the target depth maps. We adopt rectan-
gular filters with changing sizes at the first convolution layer to account for different
distortion strengths along the vertical axis of the input equirectangular image. The
encoder of this branch shares the same structure of ResNet-50 [133], while the decoder
consists of four up-projection blocks [73].

The foveal branch. Our foveal branch receives reprojected cubemap faces of
the input equirectangular image as input and generates semantic segmentation as the
output. We choose the semantic segmentation task for the cubemap branch for two
reasons. First, although directly regressing depth maps for separate cube maps seems
to be a more intuitive choice and has shown some improved performance in similar
applications [74], the problem of discontinuity at cubemap boundaries is amplified
when applied to uncontrolled general samples. We believe that compared to indoor
scenes with more uniform and symmetrical structures, our samples generated from
online videos are more challenging for the network to learn due to stronger scale
ambiguity caused by distinct depth ranges and unsymmetrical depth maps (e.g. sky
and ground). This is further verified in our qualitative evaluation. Second, with
undistorted cubemap projection, the foveal branch not only facilitates sharing features
of local objects, it can also directly utilize traditional perspective-based model weights
to accelerate the learning process, improve the model accuracy, and most importantly,
circumvent the challenge of acquiring omnidirectional segmentation ground truth.

Structure-wise, to better facilitate feature fusion at each scale, we set up an identi-
cal encoder-decoder network with Resnet-50 encoder and four up-projection modules
as the decoder. Instead of incorporating a filter at the first layer to account for dis-
tortion, we reproject the equirectangular image to cubemap before feeding it to the
first layer. We then incorporate a spherical padding process [74] to pass feature maps
between layers to connect different cube faces.

The fusion scheme. To encourage feature sharing between the peripheral branch
and the foveal branch, we perform a fusion scheme that lets each branch inform
the other with respective feature maps to balance both branches during the training
process. Unlike [74], we simplify the fusion scheme to improve the training efficiency,
and we reduced the number of fused layers to prevent an unstable training process
due to different tasks. A more detailed ablation study is presented in the experiment
section.

With mp as the feature map from the peripheral branch and mf as the feature
map from the foveal branch, we first reproject the mf to m̂f in equirectangular format
and mp to m̂p in cubemap projection. We then pass mp + C(m̂f ) to the next layer
of the peripheral branch and mf + C(m̂p) in the foveal branch respectively. The C

denotes a convolution layer.
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5.4.2 Loss Functions

We use supervised loss constraints for both depth estimation and semantic segmen-
tation tasks. For depth estimation, we use inverse Huber loss defined in [73] as the
optimizing objective:

LD(d) = { | d||d| ≥ c
d2 + c2

2c
|d| > c (5.8)

where d is the difference between the estimated result and the ground truth for each
pixel, c = max(d)/5. The loss function LS for semantic segmentation is a cross-
entropy loss between the estimated segmentation S and the result predicted with a
pre-train network S. Combined, the total loss function can be defined as:

Ltotal = LD(D,D) + LS(S, S) (5.9)

During the experiment, segmentation samples are acquired with a pre-trained weight
trained on MIT ADE20K dataset [177].

Figure 5.6: Evaluating the data generation method with the Syn-
Depth360 dataset. The left column is the synthetic samples generated
from 3D models, the middle column is the generated data using the
test-time training, and the right column is the rendered ground truth.

5.5 Experimental Evaluation

In this section, we first evaluate the quality of the Depth360 dataset against the syn-
thetic dataset SynDepth360 we generated for benchmark purposes. We then evaluate
the proposed method against other state-of-the-art single-view depth estimation meth-
ods both qualitatively and quantitatively by training on the Depth360 dataset. We
further conduct an ablative study to validate the effectiveness of our network design.
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Figure 5.7: Quantitative evaluations of the dataset. The left figure
shows occurrence of top objects in the proposed dataset. The power-
law shaped distribution indicates the most predominant background
’sky’, ’road’ and ’building’, while the most occurred foreground objects
are ’human’ and ’tree’. The right figure shows the distribution of depth
values. the leftmost and the rightmost peak manifests that internet
videos often use a hand-held capturing fashion with outdoor settings.

Both datasets and the source code are available to the community to encourage future
research.

5.5.1 Dataset Evaluations

To verify the accuracy of generating depth from internet videos with the proposed
test-time training method, we use the synthesized samples from the benchmarking
dataset SynDepth360 to evaluate against the ground truth depth maps qualitatively
and quantitatively. We further provide a distribution analysis of Depth360 and a
quantitative evaluation against existing omnidirectional datasets.

Qualitatively, samples generated from the synthetic sequences are shown in Fig-
ure 5.6. As most fine details are faithfully reconstructed, and in-scene objects show
clear boundaries, we validate that the generated dataset is useful for further single
view estimation training. It is worth noting that since the ground truth is rendered
with absolute distances with a range of infinity, a slight depth scale discrepancy is
presented. Quantitatively, our method achieves the accuracy of 49.5%, 60.6%, 70.8%
for d1, d2, and d3 using the metrics for depth prediction from the literature [124]
[75], significantly surpassing naive generation methods. They include omnidirectional
models trained with 360◦ indoor samples, with the highest accuracy of 14.6%, 22.0%,
25.5%, and perspective models trained with mixed samples, with the highest accuracy
of 41.7%, 49.3%, 59.2%.

Compared to current state-of-the-art omnidirectional datasets that facilitate single-
view depth estimation (Table 5.1), the proposed dataset achieves higher resolution,
larger size, and more diverse outdoor settings. Although the size and quality of model-
based datasets (e.g. SceneNet [131]) can be improved upon using different rendering
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methods, our dataset maintains the advantages of varied domains and easy extension
with a larger video collection.

Table 5.1: Comparison between state-of-the-art 360◦ datasets.

Name Type setting resolution # images

PanoSunCG [152] synthetic indoor 0.13Mpx 25000
SceneNet [131] synthetic indoor 0.13Mpx 25000*

Stanford 2D-3D [120] real indoor 0.13Mpx 25000*
Matterport3D [119] real indoor 0.13Mpx 25000*
Proposed dataset real outdoor 1.03Mpx 30000

From the depth value distribution analysis (Figure 5.7, right) of the Depth360
dataset, we can observe three major peaks. The leftmost peak manifests the hand-
held 360◦ camera user, while the rightmost peak shows a common sky background.
The normal distribution in the middle presents other objects in the scene such as
buildings and trees. This can be validated through the occurrence of top objects
(Figure 5.7, left) in the proposed dataset. From the power-law shaped distribution,
we can observe that the most predominant background objects are ’sky’, ’road’ and
’building’, and most occurred foreground objects are ’human’.

5.5.2 SegFuse Evaluations

Implementation Details

We implement the SegFuse network with the Pytorch framework [134] 1.4 and train
models with a configuration of Nvidia RTX 2080Ti GPU, i7-7800X CPU, and 32GB
RAM. We randomly split samples into training and validation datasets from the
dataset with a ratio of 90% and 10%. During training, we use Adam optimizer [135], a
learning rate of 3e-4 and, a batch size of 1. The peripheral branch uses Xavier initial-
ization [136] while the foveal branch initializes with ImageNet pretrained weights. The
same metrics from the literature are used for quantitative evaluation [75]. Our cur-
rent implementation takes smaller batches due to graphics memory restrictions. We
expect a more stable training process with a better hardware configuration, with po-
tential improvements such as batch normalization. Our method costs approximately
100ms with the same configuration to predict a single equirectangular image, favoring
interactive frame-rate for applications.

Qualitative Results

We present qualitative results of single-view depth estimation from omnidirectional
images with different methods including Omnidepth [117] and FCRN [73]. As we can
observe in Figure 5.8, when tested on unseen equirectangular images with challenging
outdoor settings, our method generates better sharper estimation while maintaining
a smooth global depth map prediction. This can be attributed to the foveal branch
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that improves local details. More qualitative results with diverse settings are included
in the supplementary material.

As we argued that for challenging outdoor cases with wildly changing ranges and
unsymmetrical distributions, directly using cubemap projection to regress depth maps
for each face and fusing with equirectangular estimation afterward shows sub-optimal
performance. Such inconsistencies at face boundaries are presented in Figure 5.10
(BiFuse [74]). We offer a detailed convergence analysis of the proposed method against
BiFuse that uses cubemap projection to fuse depth for outdoor samples. The results
can be observed in Figure 5.9. We compare the performance via inverse Huber loss
when both networks are trained with the Depth360 dataset. We show that our method
converges much faster (the blue line) with the help of latent information shared by the
pretrained semantic segmentation weight, while the cubemap-based depth regression
struggles to effectively merge faces and learn outdoor settings (the orange line). As
we can see in the bottom half of Figure 5.10, the middle figure shows the result of
regressed depth from the cubemap branch of BiFuse, and the right figure shows the
final fused output of BiFuse. Clear boundaries between faces result in deteriorated
fused output when compared to a single-branch architecture such as FCRN.

Figure 5.9: To validate our network design, we evaluate against Bi-
Fuse [74], a cubemap-based depth fusion method. When trained with
outdoor samples, SegFuse converges much faster (the blue line) while
the cubemap-based depth regression struggles to effectively merge

faces and learn outdoor settings (the orange line).
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Figure 5.10: The result of regressed depth from the cubemap branch
of BiFuse and the final fused output of BiFuse.

Quantitative Results

Adopting the metrics for depth prediction from the literature [124] [75], Table 5.2
presents the quantitative evaluation of our method against the state-of-the-art single-
view omnidirectional depth estimation methods in both real-world and synthetic do-
mains. We can observe that SegFuse successfully captures the features of the outdoor
dataset when compared to other methods. Overall, our method shows favorable re-
sults against FCRN, Omnidepth, and BiFuse. We further evaluate the performance
in indoor settings by training networks with 3D60 dataset [117], which consists of
SunCG [152], SceneNet [131], Stanford2D3D [120], Matterport3D [119]. We bench-
mark against the ground truth depth with filled-in values for invalid pixels like FCRN
[73]. Table 5.3 shows a comparable accuracy of SegFuse with the state-of-the-art
designed for indoor predictions [74], and better performance against other omnidirec-
tional methods.

Table 5.3: Qualitative results of indoor-only settings.

Method RMSE RMSElog δ < 1.25 δ < 1.252 δ < 1.253

OmniDepth [117] 0.6364 0.1358 77.30% 91.24% 97.21%
BiFuse [74] 0.5639 0.1007 85.12% 93.38% 98.16%
FCRN [73] 0.6429 0.1286 78.08% 92.09% 97.33%

SegFuse (Ours) 0.5729 0.0986 84.38% 94.34% 98.07%

Ablation Studies

Finally, we perform an ablation analysis between the SegFuse and learning without
the foveal branch. We use the same training settings with and without fusing the
foveal branch with the peripheral branch, and the quantitative evaluation is shown
in Table 5.4. In addition to better accuracy, we also find that the converging speed
when training with SegFuse is almost 2x faster at the beginning thanks to the pre-
trained segmentation weight. This shows the additional benefit of using a multi-task
architecture to solve the depth estimation problem. We then compare the accuracy of
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the SegFuse network with different numbers of fused layers at the decoder. We find
that while connecting three and four layers both achieve close performance, using three
fusion blocks usually provides a slightly more stable training process and improved
efficiency. A quantitative ablation study is presented in Table 5.5.

Table 5.4: Ablation results of the foveal branch.

Method RMSE RMSElog δ < 1.25 δ < 1.252 δ < 1.253

Peripheral only 4.9281 0.8979 57.79% 74.20% 78.11%
SegFuse 4.0442 0.7777 82.26% 91.35% 94.22%

Table 5.5: Ablation results of connected layers.

RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

1 4.9297 0.8933 70.13% 79.17% 87.92%
2 4.3782 0.8126 77.85% 86.83% 92.50%
3 4.0442 0.7777 82.26% 91.35% 94.22%
4 4.0168 0.7994 81.67% 91.75% 93.82%

5.5.3 Depth-based Applications

High-quality depth estimation from a single 360◦ image enables a wide range of inter-
esting applications. We take visual effects as an example to showcase the strength of
our method in virtual reality. We first use the proposed method to estimate a high-
quality dense depth map from an input omnidirectional RGB image. We then project
per-pixel depth values onto a 3D sphere to render a pseudo-reconstructed scene with
mesh. This facilitates augmenting the original scenes with effects such as volumetric
snowing and flooding. A preview is shown in Figure 5.11, and full video results are
included in the supplementary material.

Figure 5.11: An example of depth-enabled applications. By esti-
mating corresponding depth maps from an input 360◦ image, we add
volumetric effects to the scene such as snowing (left) and flooding

(right).

5.6 Failure Case and Future Work

Although our data generation method can be applied to larger-scale collections to
extend the size of datasets, it shows several limitations. First, online omnidirectional
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videos present unbalanced distributions, favoring specific scenarios (e.g. urban street
views). Second, when establishing the baseline, SfM and MVS methods show sub-
optimal results when there are texture-less surfaces or reflective materials in the scene.
Scenes with excessive dynamic foreground objects or strong motions are problematic
for a pseudo-stereo system to acquire accurate geometric consistency. Future work
could alleviate these problems by adopting improved SfM algorithms and scaling to a
larger variety of input collections. For depth estimation, the current implementation
only accepts smaller batch sizes due to hardware limitations. We expect to improve
the efficiency of the network and enable more stable training with better normalization
methods.

5.7 Conclusion of the Chapter

In this chapter, we first propose to utilize the unlimited source of data, 360◦ videos
from the internet, to overcome the scarcity of a general omnidirectional dataset. We
propose geometric and temporal constraints that are unique to 360◦ videos and use
test-time training to generate high-quality depth maps. To fully benefit from our
dataset, Depth360, we propose an end-to-end two-branch multitask network, SegFuse,
that mimics human vision to estimate depth from a single omnidirectional image.
With the peripheral vision to perceive the depth of the scene and foveal vision to
distinguish between objects, our network shows favorable results against state-of-the-
art methods.
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Chapter 6

Employing Scene Understanding in
Immersive Mixed Reality

In this chapter, we try to explore practical applications of different scene understand-
ing algorithms in the context of mixed reality in order to further provide users with
improved capabilities and immersive experiences. We put forward two different appli-
cations: editing foreground objects of interest in pre-captured omnidirectional videos
and consistent artistic stylization for pre-captured videos, to demonstrate the benefit
and potential of alike studies. The first section concludes with the visual aspect of a
previous work that has been published [13] with extended methodologies to further
extend its contribution. The second section is rather short in length. Being inspired
by the undergraduate work [178], we investigate its feasibility under the mixed real-
ity context by artistically stylizing pre-captured videos. We expect this application-
focused chapter can shed more light on more practical employments of newer scene
understanding algorithms in the modern virtual/augmented reality era.

6.1 Editing Foreground Objects in Pre-captured 360◦ Videos

6.1.1 Introduction

With the increasing popularity of mixed reality and high-fidelity commercial 360◦

cameras being widely accessible, there is a growing number of omnidirectional media
being available[116][179]. Thanks to its potential of providing the visual of the en-
tire scene for an immersive user experience, it has been attracting attention in both
academic and industrial contexts [24]. However, while the major strength of the 360◦

format of media is a larger field-of-view, bringing the capability to capture the sur-
roundings at once, it is usually difficult for users to frame the scene as they wanted
[13], and put the focus solely on the important objects when compared to traditional
perspective formats with limited field-of-view and flexible depth-of-field.

Considering the rising demand for editing algorithms for omnidirectional content,
we investigate some basic editing capabilities, namely adding and erasing an unde-
sirable object from pre-captured footage in this chapter. We put forward several
non-trivial issues and their respective solutions and propose a complete framework for
editing foreground objects in 360◦ videos.
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For traditional perspective videos, there are abundant tools to help the user to edit
their pre-captured footage during the post-processing stage, including adding post ef-
fects with natural appearances with harmonization [180] or removing unwanted objects
with learning-based images inpainting [181]. However, when it comes to 360◦ contents,
the distortion to project spherical information onto 2-dimensional planes during stor-
age usually makes some basic simple editing capabilities difficult to achieve [117], such
as adding and erasing an undesirable object from pre-captured footage. Moreover,
due to the limited available database to effectively drive the existing learning-based
approaches [114], the results are often sub-optimal when directly applying perspective-
based methods to omnidirectional contents.

To effectively add and erase foreground objects from pre-captured 360◦ footage,
we present a pipeline that first employs scene understanding to track the object of
interest using equirectangular projection, followed by cubemap projections to divide
the omnidirectional scene into smaller patches with less distortion. We then realize
adding additional objects through frame-wise image harmonization [180] and erasing
unwanted foreground objects with image inpainting [181]. We provide a proof-of-
concept implementation for editing foreground objects in pre-captured 360◦ videos.
A qualitative evaluation verifies the practicality of the proposed method, and a user
study further confirms the improvement of the user’s immersive experience of edited
footage.

6.1.2 Related Work

Omnidirectional Videos

With the progress in mixed reality hardware and software, pre-captured 360◦ videos
enable users to look around their entire surroundings with 3 degree-of-freedom instead
of a fixed perspective during video playback. Over recent years, more accessible
commercial 360◦ cameras (e.g., Insta360) allow normal consumers to conveniently
capture 360◦ footage with high fidelity and little to no post-processing. Online video
sharing platforms (e.g. YouTube) further encourage the prosperity of omnidirectional
content.

However, since 360◦ cameras capture the visual information of the entire spherical
environment, it requires different compression and projection to store 3-dimensional
information onto 2-dimensional planes. Equirectangular projection is the most widely
adopted format to store pre-captured 360◦ footage, which has a bipolar pattern of
distortion. Due to stronger distortions towards the polar regions, directly applying
perspective-based methods usually lead to incorrect assumptions and severe visual ar-
tifacts. Other projections include cubemap projection [114] and equiangular cubemap
projection [182]. While the later projections have a consistent density of information
across different regions of the frame, inconsistency along boundaries are issue need to
be considered.
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Image inpainting

Image inpainting is a research topic proposed to visually reconstruct the blank area
with convincing appearances based on the global context after removing a certain
target from the original image. It can be applied to different areas including video
editing [183] and repairing vintage films [184]. Traditional approaches are usually
exemplar-based [185], differential equation-based [186] and patch-based [187]. After
Pathak et al. [188] proposed to adopt Convolutional Neural Networks into image
inpainting tasks, learning-based methods such as using Generative Adversarial Net-
works [189] have shown great performance to generate plausible output for single
image inpainting.

When it comes to video inpainting, image-based methods often yield inconsistent
results due to the additional temporal constraints across the frames. Scenes with
complex self-motions and dynamic environments severely suffer from flickering and
subpar inpainting results. Video-based inpainting that is either patch-based or object-
based shows respective weaknesses of being vulnerable to scale changes [190] and
strong self-motions [191]. Recent learning-based methods show improved performance
by adopting flow information to generate plausible pixels with global features across
neighboring frames. However, they are not designed for omnidirectional videos with
distortions in mind.

Image Harmonization

Image composition is a basic task for image editing and content creation. After plac-
ing the desired object onto a new background, it usually requires extensive labor of
the user to manually match the appearance (color, white balance, lighting, etc.) of
the composited object with the background to ensure the realism of the final output.
To achieve quality image harmonization, traditional methods use hand-crafted fea-
tures [193] to adjust the statistics of foreground objects and the background without
considering the high-level features of both inputs. Recent learning-based methods use
global perceptual context to evaluate the realism of the output [194]. Other meth-
ods further incorporate semantic segmentation [195] and attention modules [180] to
perform end-to-end harmonization with high quality.

However, video harmonization is an under-investigated topic with very limited
attention. Considering the frame-by-frame adoption of single image-based harmo-
nization will inevitably result in flickering due to randomized initialization and dif-
ferent regional features [196]. While there are temporal losses proposed in other deep
learning-based video methods [197], the various relationship between foreground ob-
jects and the background is computationally complex to achieve coherent results.
Additionally, the training data of paired background-only and composited results is
difficult to acquire, and synthesized databases suffer from domain differences in gen-
erating satisfying results. Considering that video harmonization is already limited
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for traditional perspective inputs, it is more challenging to add foreground objects to
360◦ videos.

6.1.3 The Foreground Editing Framework

We describe the proposed foreground objects editing framework for pre-captured om-
nidirectional videos. For adding new objects from another pre-captured footage into
the target omnidirectional video, the input consists of a source perspective footage and
a target omnidirectional footage. For erasing existing foreground objects from pre-
captured omnidirectional footage, the input consisted of the footage and user-specified
(through a drag-and-release bounding box) foreground objects. With an accurate se-
mantic segmentation algorithm that is designed for omnidirectional images, we obtain
the desirable foreground objects across the frames after solving the distortion. We
then apply the state-of-the-art video inpainting [181] and image harmonization [180]
methods to achieve natural edited results. The workflow is demonstrated in Figure 6.1.

Erasing Foreground Objects

Figure 6.2: An example of discontinuity when an object is moving
across the boundary when using a 2-dimensional projection.

For erasing foreground objects from pre-captured omnidirectional videos, we first
determine the object of interest through a user-specified bounding box followed by re-
projecting the patch to a 2-dimensional plane. Considering that directly applying the
perspective-based image inpainting methods frame by frame would cause two prob-
lems: discontinuity and distortion, we explain how the proposed method tackles the
challenges respectively. For spherical input, there are no distinct boundaries anywhere
on the surface. However, when we try to adopt a traditional neural network that is
designed for 2-dimensional images, we inherently project 3-dimensional information to
a 2-dimensional plane. This inevitably leads to two boundaries either at the top and
the bottom edges or at the left and the right edges. In case a target object is moving
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horizontally or vertically across the frame, it will be “exiting” and “re-entering” discon-
nected boundaries (an example is shown in Figure 6.2). This problem of discontinuity
needs to be solved to apply existing inpainting approaches.

In this work, instead of tracking the target object across the frames, we fix the
object at the center of the frame by rotating the entire equirectangular projection to
solve the discontinuity issue. After the object of interest is specified with a bounding
box, we determine the semantic segmentation of the object with SiamMask [192], and
then calculate the center of mass. The process is shown in Figure 6.3.

Figure 6.3: An example of calculating the center of gravity using the
predicted semantic segmentation.

The proposed framework rotates subsequent frames in a incremental and iterative
manner to predict semantic segmentation so that the discontinuity issue will not occur
in the successive frame. We rotate the frame Ft at the timestamp t according to the
following equation:

Ft+1 = R(Ft,Δt). (6.1)

To determine the amount of rotation,

Δt =
H

2
− c̃t, (6.2)

where

ct = −
t∑

t′=0

Δt′ . (6.3)

c̃t is the rotated center of gravity of the semantic segmentation for the frame Ft, while
ct is the center of gravity for non-rotated frames. H and V are dimensions of the
input equirectangular frame.

We then solve the problem of distortion by projecting input equirectangular frames
into 2-dimensional images with reduced field-of-view. With adjusted frames and re-
spective semantic segmentation of all frames, we determine the area to crop according
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to the following equation:

θ =
h

H
× 2π, (6.4)

φ =
v

V
× π, (6.5)

where θ (elevation) and φ (azimuth) determine the field of view of the reprojected
patches, h and v are the maximum values of the semantic segmentation dimensions
for all frames. We process each patch through deep video inpainting [181] and acquire
the inpainted frames. Finally, we reproject the results back into the equirectangular
format in the reversed order.

Figure 6.4: The process of inpainting the target area with distortion
by reprojecting between the equirectangular and cubemap projection.

Adding Foreground Objects

In this section, we explain how we add existing foreground objects from a pre-captured
omnidirectional or perspective video to the target omnidirectional video sequence.

We first acquire the semantic segmentation of the target object through SiamMask
[192] in a similar fashion to the erasing process. We then determine the area of interest
by asking the user to manually assign a coordinate that functions as the center of
gravity to further augment the foreground object. During this stage, we repurpose
the semantic segmentation as the harmonization mask to facilitate the harmonization
process. To prevent distortion, we reproject the equirectangular input source video to
cubemap projection in a similar fashion to the erasing process:

θ =
m

H
× 2π, φ =

n

V
× π, (6.6)
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It is worth mentioning that when we directly projecting equirectangular and cube-
map representations back and forth using the following transformation:

θf = arctan(
qx
qz)

, (6.7)

φf = arctan(
qy
q
), (6.8)

q = Rf · p, (6.9)

where pixel p with the coordinate (x, y, z) on the 2-dimensional plane f base on the
assumption that 0 ≤ x, y ≤ w − 1 and z = w/2, there will be pixels with unknown
value that cannot be directly one-to-one mapped from integer coordinates. Therefore,
we use inverse mapping to approximate the value of the unknown pixel on the cube
faces based on its corresponding pixel on the equirectangular image.

6.1.4 Experimental Evaluation

In this section, we report the experiment and the user study that we conducted to
verify the effectiveness of the proposed foreground object editing framework for om-
nidirectional videos. We captured multiple omnidirectional video sequences with dif-
ferent conditions to qualitatively evaluate our method. For the erasing process, the
conditions include two outdoor scenes and one indoor scene. For the adding process,
the conditions include one outdoor scene and one indoor scene.

During the experiment, all sequences are captured with a commercial hand-held
360-degree camera (i.e., Ricoh Theta V). To process the pre-captured videos with
the proposed framework, we conducted the experiment on a desktop computer. The
hardware configuration is listed below, and the qualitative results can be observed in
Figure 6.5

Table 6.1: Experimental configuration of the hardware

Component Details

CPU Intel i9-9900K 5.0GHz
GPU Nvidia GeForce GTX 2080Ti
Omnidirectional camera Ricoh Theta V (30fps@2160× 1080)
Playback device HTC Vive Pro (90fps@1440× 1600 per eye, 110◦ FOV)

In the user study, we try to verify if the processed footage of the proposed fore-
ground object editing framework is satisfactory and can bring an immersive experi-
ence to users. 17 subjects (with average ages of 23.1 +- 1.5) participated in the study.
5 participants have no virtual reality/augmented reality experience, 10 participants
have a moderate amount of experience with mixed reality, and 2 participants are fa-
miliar with video playback in mixed reality. During the study, users are assigned with
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Figure 6.5: The result of the proposed foreground object editing
framework. The first row is input and the second row is the result.

The last row is a zoomed in view for better visualization.

randomized order of processed videos to prevent bias. For each scene, the user fol-
lows instructions to start the playback or rewatch the result for arbitrary times until
they have made an established decision regarding the current scene. According to
the feedback of the questionnaire in addition to the free comments in the subsequent
semi-structured discussions, we confirmed a positive experience with the implemented
framework. This can be observed in Figure 6.6

For question 1, whether the target object was visually erased from the original
scene, users generally had positive feedback that the visuals were pleasing, especially
for outdoor footage. This can be attributed to a smaller portion of the target object
when compared to the entire scene, and also more complex textures are harder for
users to notice the artifacts that are introduced during the editing phase. For question
2, whether the edited footage is natural, we observed a lower score when compared
to question 3, whether the users were satisfied with the final output. According
to the comments during the discussion, this is mainly due to that while the object is
visually erased, the ambiance of the target object still remains, breaking the immersive
experience to a certain degree. While the importance of multi-modal editing is already
confirmed [13], considering that auditory processing is beyond the scope of this thesis,
we will omit the detailed discussions. At the current stage, while users are relatively
satisfied with the editing result, this is a result of a lower-than-perfect resolution for
both capturing process and the capacity of the neural networks used for inpainting and
harmonization. Considering that the resolution of commercial mixed reality devices is
far higher than mainstream neural network capacity (usually up to full HD), efficient
networks to facilitate high-fidelity applications are both important and challenging in
the near future.
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Figure 6.6: The result of the user study. For each scene, the users
answer a Likert-scale survey for three questions regarding the editing

result.
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6.2 Consistent and Foreground-aware Neural Style Trans-
fer for 360◦ Videos

6.2.1 Introduction

Neural style transfer is a research field that studies using deep learning algorithms
to artistically stylize photo-realistic images with painting-like aesthetics. Although
art creation was believed to be a complex and challenging task for the machine to
understand and accomplish, Gatys et al. [198] decompose the process into statisti-
cally solvable components of “style” and “content”, which can be effectively learned
by neural networks individually. This leads to a whole new direction of research and
encourages abundant following work. While the initial idea is to iteratively opti-
mize the input of randomized noise to match the features of the target style image
by calculating the Gram matrix, later work [42] greatly improves the capabilities of
the original method, including real-time performance [42], cross-frame consistency
[199] [128], guided transfer with user input [200], content-aware transfer [201]. In the
context of mixed reality, previous methods [128] propose a naïve method to directly
transfer individual components of cubemap projection for omnidirectional input.

Figure 6.7: Consistent and foreground-aware stylized results using
the proposed method.

In this work, I present a method that can achieve results that are both spatially
and temporally consistent for omnidirectional videos. Given the input of an omni-
directional video and a target style, the system calculates the omnidirectional-aware
optical flow between consecutive frames. Because each frame is stylized individually
from different noises, this enforces the temporal consistency by calculating the dis-
tance between reprojected frames and minimizing the deviation. The system further
achieves spatially consistency by utilizing semantic segmentation for omnidirectional
videos to understand the context of the input. After separating the foreground and
the background, it stylizes the inpainted background and the foreground patch respec-
tively. Finally, by adopting a padded cubemap projection mentioned in the research
of Chapter 5, the output of the method achieves visually satisfying results for omnidi-
rectional videos. A preview of the experimental result is shown in Figure 6.7. It shows
the great potential of scene understanding in practical mixed reality applications.
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6.2.2 Related Work

Neural style transfer for images. The ability to transfer the artistic style from a
reference image to an input image is an interesting idea to achieve non-photorealistic
rendering. Before learning-based approaches became popular, patch-based and non-
parametric methods were usually widely used to achieve texture transfer for non-
photorealistic rendering. Image quilting [202] and analogies [203] are used to learn the
mapping between the texture of two images and synthesize the result that resembles
the texture of the style image. Edge orientation is later incorporated to ensure a
natural gradient [204]. To accelerate the process, Markov random field [205] is used
to improve the efficiency of searching for candidate pixels.

Inspired by the initial work of Gatys et al. [206], artistic style transfer has be-
come a popular deep learning topic for its capability to achieve art creation, which
was believed difficult for the machine to accomplish. By iteratively optimizing the
similarity of high-level features in artistic style and image content, it has shown im-
pressive results for artistic style transfer tasks. To reduce the lengthy optimization
process, a feed-forward network structure is proposed [42] along with a perceptual
loss to facilitate real-time applications. Using instance normalization instead of batch
normalization in convolutional networks [207] demonstrates a greatly improved sep-
aration between high-level features. Conditional instance normalization [208] [209]
further brings the capability of learning several art styles simultaneously. Generative
adversarial networks are also a popular choice for image-to-image translation [210].

Neural style transfer for videos. For video artistic style transfer, because
each frame is usually initialized from different noise, the appearance of output can
be drastically different from each other, causing inconsistency across frames and lead-
ing to unsatisfying stylization. Anderson et al. [199] propose to initialize per-frame
optimization based on the previous frame to solve the flicker issue and improve the
consistency of stylized results. Likewise, a long-term temporal loss is introduced by
Ruder et al. [211] to solve false stylization before and after occlusions. Later, Ruder
et al. [128] further incorporate feed-forward networks to achieve a faster stylization
speed and extend the capability of style transfer to 360-degree input by directly solv-
ing each face of a cubemap projection independently. Although it shows the potential
of artistic style transfer in the context of mixed reality, the performance of the method
is quite limited with its trivial addition over its perspective counterpart.

6.2.3 Consistent Artistic Style Transfer

Overview. In this section, I will describe the proposed neural style transfer method
for omnidirectional videos which is temporally consistent and foreground aware. To
achieve a better understanding of context, we stylize the foreground object and the
background independently through semantic segmentation and an image inpainting
module. To ensure a globally smooth result for the background, we use the image
inpainting technique explained in the previous section, Section 6.1, combined with
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a cube padding approach for consistent boundaries. To ensure temporal consistency
across frames, we use an optical flow algorithm to calculate the deviation between
reprojected frames. Finally, we composite the background and the foreground to
output finished frames. The overall framework is shown in Figure 6.8.

Figure 6.8: The framework of the proposed temporally consistent
and foreground-aware video style transfer method.

One of the critical components of current neural style transfer methods is percep-
tual loss, which can be used to preserve the high-level spatial structure of the input
image and leave out the detailed color and texture. This can lead to perceptually
close results to the original input, instead of forcing an exact mapping between the
two. To achieve this, the perceptual loss is calculated with additional neural networks
with fixed weights, and most of the time, they are pretrained with popular perspective
datasets for image classification, such as ImageNet [111] and Microsoft COCO dataset
[212]. As a result, directly optimizing output from equirectangular formats will result
in sub-optimal performance.

Cube padding. To effectively take advantage of the perceptual loss and learned
knowledge of object semantics, the proposed system first reprojects the equirectangu-
lar format into cubamap projection. When compared to the equirectangular projec-
tion, each face of the cubemap projection has a very similar field-of-view to traditional
perspective images, and thus can effectively utilize the underlying knowledge. Con-
sidering that independently stylizing each face of the cubemap and stitching them
afterward will result in inconsistency along boundaries, a cubemap padding method
is used to prevent this.

Instead of directly extending the neighboring pixel along a single edge [128], we
use a larger field-of-view when rendering each cube face. This process is illustrated in
Figure 6.9. During the experiment, we extend the reprojection field-of-view for each
face σ from 90◦ to 110◦. This can effectively overlap each face with no missing regions
and enforce continuity along boundaries. By compositing the overlapping region with
linear blending:

g(x) = (1− α)f1(x) + αf2(x), (6.10)

where α is 0 → 1. The projection model between equirectangular and cubemap is the
same as we used in Chapter 5.
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Figure 6.9: Instead of stitching neighboring pixels along the bound-
aries, we use a larger field-of-view when projecting each cube face.

Foreground-background separation. To separate the foreground object from
the background of the pre-captured omnidirectional videos, we adopt a pretrained se-
mantic segmentation network, mask R-CNN [52], to obtain the mask of the foreground
object. However, considering that it is highly likely that the foreground object will
move out of cube faces for a longer range of frames, a different appearance is likely
to cause failure for the semantic segmentation task. Therefore, we pre-process the
footage by rotating the spherical surface in a similar fashion described in Section
6.1.3. To be specific, we rotate the consecutive frames R(Ft,Δt) based on the mask of
foreground objects in the previous frame Ft−1. By fixing the center of gravity of the
semantic segmentation in the same place and adjusting the global environment, we
can prevent the foreground moves across cube boundaries. After the entire sequence
is predicted, we reverse the process of rotation withR̃(Ft,Δt). Afterward, we process
the background patches with foreground objects removed through a state-of-the-art
deep video inpainting algorithm [181].

Style transfer for a single frame. Previously, neural style transfer methods
decomposed the problem into two components, style loss and content loss. For an
input image with content c, the target image style s, and output image x, we denote
the feature maps of each one respectively as C, S, and F. Then the style loss can be
defined as

Lstyle(x, s) =
∑ 1

M2N2

∑
(GF −GS), (6.11)

where M , N are dimensions of the input and G stands for the Gram matrix [206].
Similarly, the content loss is

Lstyle(x, c) =
∑ 1

M2N2

∑
(GF −GC). (6.12)

Therefore, the total loss is the sum of both content loss and style loss with respective
weight w:

Ltotal(x, c, s) = wiLstyle(x, c) + wjLstyle(x, c) (6.13)
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Instead of iteratively optimize the output x, feed-forward network suggest calculating
a perceptual loss [42] against a pretrained network φ:

Lperceptual =
1

MN
‖φ(c)− x‖2 (6.14)

During the runtime, we stylize the foreground patch and the background patch inde-
pendently and composite the results together afterwards with regard to the semantic
segmentation results.

Temporal consistency. For video input, even for visually identical frames, it
is very likely that two consecutive frames that are initialized differently will result
in stylized output that has drastically diverse appearances. To prevent flickering
and instability across frames and provide a visually satisfying stylization result, we
further incorporate a temporal consistency to improve the performance of videos. This
is enforced through optical flow with a forward-backward warping. Given the optical
flow between frames Fi and Fj in the forward direction,

f̃(Fi, Fj) = f((Fi, Fj) + f(Fj , Fi)) (6.15)

Given pixel p = (φ, θ), the warped pixel p̃ on the target frame k̃ is then:

p̃ = p+ f̃j→k(p), (6.16)

k̃(p) = F̃
j→k̃

(fj→k(p), j(p)) (6.17)

The temporal consistency between two frames is then:

Ltemporal
j→k =

∑
p

||k̃p− k(p)||2 (6.18)

6.2.4 Experimental Evaluation

Implementation details. In this section, we present the implementation details
and experimental results of the proposed method. We tested the method on omnidi-
rectional videos we collected from the internet, which is described in Chapter 5, to
showcase a good generalization. All video frames were resized to 1440 x 720 to ensure
a good visual fidelity when viewed in mixed reality applications. For each style image,
we train the feed-forward network [42] for 20,000 iterations. During the experiment,
the batch size was limited to 2 due to the higher resolution of omnidirectional images.
The learning rate was set to 10−3 with Adam optimizer. Hardware details are given
in the following table.

Experimental results. We present the qualitative result of the proposed method
in Figure 6.10. By showcasing the stylized results of frame #1, frame #10, frame #20,
and frame #30 (for a 30 frame-per-second video), we can observe temporally consistent
results even for more distant frames. When focusing on the foreground target, in this
case, the driver, we can see a clear boundary for the target, and the stylized results
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Table 6.2: Experimental details of the hardware

Component Details

CPU Intel i7-7800X 4.0GHz
GPU Nvidia GeForce GTX 2080Ti
Memory 32GB
Input Resolution 1440× 720
Output Resolution 1440× 720

(color, stroke, etc.) stay consistent and within the semantic segmentation of the target
across the frames. For stylizing every frame, the proposed method takes approximately
500ms.

Figure 6.10: Qualitative results of the proposed methods.

6.3 Conclusion of the Chapter

Mixed reality as rising technology, is a result of advancements in computer vision. This
chapter offers some degree of insight into how to practically take advantage of better
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scene understanding algorithms that can solve multiple challenging tasks effectively
and efficiently.

We first propose a video editing framework that erases and add foreground objects
with natural appearances for pre-captured omnidirectional videos. With an extensive
user study, we successfully verify the effectiveness of our proof-of-concept implemen-
tation of an omnidirectional video editing framework. This method is possible to be
applied to other applications in mixed reality, such as assisting users by highlighting
important objects, or privacy protection by erasing sensitive information.

In the second half, we propose a video stylization method that artistically transfers
omnidirectional videos into a target-style image with distinct foreground representa-
tions and temporal consistency across the frames. By designing a framework that
can successfully take advantage of the perceptual knowledge from perspective train-
ing data, the results show good generalization and visually pleasant results even for
videos randomly collected from the internet.

In the future, we envision proposing more efficient neural networks that are capable
of processing high-fidelity input while maintaining a real-time performance for visually
editing and stylizing omnidirectional videos.
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Chapter 7

Conclusion

7.1 Summary

In this dissertation, we investigated how to use scene understanding and data augmen-
tation to improve immersive mixed reality from multiple spatial scales and studied
employing computer vision algorithms for practical mixed reality applications. After
we review the backgrounds of related research fields, we present four research work
in four respective chapters to tackle existing challenges in mixed reality and improve
the immersive user experience.

In Chapter 3, we presented a real-time method to handle the hand-object occlu-
sions in mixed reality. We propose a photo-realistic RGBD hand-object database
with precise hand postures and semantic segmentation annotations to facilitate our
occlusion-aware joint learning system. With a novel real-time optimization pipeline,
we utilize the jointly predicted postures and segmentation to calculate occlusion masks
and render objects with correct occlusions. The experimental results show better
quantitative and qualitative performance than previous literature, and a user study
verifies a more realistic mixed reality experience of hand-object interactions. The
implementation shows good accuracy, robustness, and speed with the potential to be
further adapted to other applications.

Currently, we are using an existing framework to handle the object augmentation
during the usage, and hence there is room to improve and resolve the issue of mis-
alignment when localizing the optimized hand model. In addition, there is no reliable
occlusion-aware object tracking in the current implementation and this leads to losing
augmentation of the object during experiments due to strong occlusions. Joint track-
ing of hand and object is a promising direction for a more consistent and sophisticated
mixed reality experience.

In Chapter 4, We presented a data augmentation method to generate high-quality
equirectangular databases with paired color and ground-truth depth annotations by
repurposing abundant and easily obtainable 2-dimensional RGBD databases. With
this database, we first introduced and implemented an auxiliary network that calcu-
lates local depth loss to resolve an issue that small regions of interest are frequently
smoothed out during optimizing global gradients. We take humans, a crucial subject
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in 360◦ contents, as an example to show the efficacy of our approach. We showed
improved accuracy of our approach compared to the state-of-the-art technique.

To further improve the accuracy of the foreground-aware scene understanding, we
proposed a foreground-aware bi-projection-based design. The proposed architecture
produces consistent global depth prediction with the equirectangular projection, while
enforcing local detailed features through the cubemap projection. An additional fore-
ground loss acquired through a multitask learning approach of semantic segmentation
complementarily provides sharper boundaries of predicted foreground objects. With
quantitative and qualitative evaluation, we successfully verified the effectiveness of
the proposed method. We believe the ability to accurately predict depth informa-
tion for omnidirectional images can facilitate a wide range of applications such as
3-dimensional reconstruction and mixed reality.

At present, our data augmentation method is based on the premise that both 2-
dimensional and 360◦ data are captured with similar extrinsic parameters (e.g. cam-
eras are aligned horizontally, positioned at average eye-level height) and lighting con-
ditions, while it is true for most data captured in lab conditions, its application for
in-the-wild images is limited. Furthermore, our approach works for both indoor and
outdoor settings. Nevertheless, for outdoor settings, a higher dynamic range of lumi-
nosity and sunlight’s ambient IR will render capturing RGB and depth information
inherently difficult. While self-supervised methods or multi-view-based generation
methods to further reduce the need to acquire expensive ground truth data are exten-
sively studied in our subsequent works, exploring generating samples with different
lighting conditions with GANs to improve the robustness of depth estimation seems
to be effective and promising future research.

In Chapter 5, we first proposed to utilize the unlimited source of data, 360◦ videos
from the internet, to overcome the scarcity of a general omnidirectional dataset. We
propose geometric and temporal constraints that are unique to 360◦ videos and use
test-time training to generate high-quality depth maps. To fully benefit from our
dataset, Depth360, we propose an end-to-end two-branch multitask network, SegFuse,
that mimics human vision to estimate depth from a single omnidirectional image.
With the peripheral vision to perceive the depth of the scene and foveal vision to
distinguish between objects, our network shows favorable results against state-of-the-
art methods. With the ability to estimate high-quality depth information of the global
context of omnidirectional images, we implement an application to showcase how scene
understanding can help improve the immersive experience in mixed reality.

Although our data generation method can be applied to larger-scale collections to
extend the size of datasets, it shows several limitations. First, online omnidirectional
videos present unbalanced distributions, favoring specific scenarios (e.g. urban street
views). Second, when establishing the baseline, SfM and MVS methods show sub-
optimal results when there are texture-less surfaces or reflective materials in the scene.
Scenes with excessive dynamic foreground objects or strong motions are problematic
for a pseudo-stereo system to acquire accurate geometric consistency. Future work



7.2. Future Direction 117

could alleviate these problems by adopting improved SfM algorithms and scaling to a
larger variety of input collections. For depth estimation, the current implementation
only accepts smaller batch sizes due to hardware limitations. We expect to improve
the efficiency of the network and enable more stable training with better normalization
methods.

In Chapter 6, we explored practical applications of different scene understanding
algorithms in the context of mixed reality to further provide users with improved capa-
bilities and immersive experiences. We put forward two different applications: editing
foreground objects of interest in pre-captured omnidirectional videos and consistent
artistic stylization for pre-captured videos, to demonstrate the benefit and potential
of alike studies. We successfully verified the feasibility to employ existing scene un-
derstanding algorithms to solve practical problems in the mixed reality environment
through our proof-of-concept implementations. In the future, we envision propos-
ing more efficient neural networks that are capable of processing high-fidelity input.
Another stream of future work for visually editing omnidirectional videos would be
taking temporal consistency into consideration for yielding more stable outputs.

Throughout the thesis, we followed the order of different spatial scopes of scene
understanding and studied how each scale improves the immersive mixed reality. We
started from a smaller scale of understanding local hand-object interactions, followed
by observing the foreground objects of interest in mixed reality scenes, and finally, we
studied the entirety of the scene and try to comprehend the global context. We pre-
sented multiple practical employment of scene understanding and data augmentation
algorithms in mixed reality applications and validated their effectiveness through user
studies.

7.2 Future Direction

To strive for better immersive mixed reality, based on our research on scene under-
standing and data augmentation with their respective limitations, we try to discuss
some potential directions for future research that utilizes scene understanding to im-
prove mixed reality experience. Throughout the process of designing the hardware to
present convincing visualizations in front of the users’ eyes, there are multiple impor-
tant steps that we introduced at the beginning of the thesis rely on a robust, efficient,
and effective understanding of both the virtual environment and the physical world
that surrounds the user.

On a global level, the current generation of fully or partially immersive mixed
reality devices still rely on depth and infra-red sensors to sense the environment and
establish the mapping for subsequent augmentation processes, and the result is that
outdoor mixed reality is quite limited and under-investigated when compared to the
indoor environment. With sophisticated image-based scene understanding algorithms,
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it is possible to use predicted information with high accuracy to circumvent the chal-
lenge. At the same time, Lidar-based augmented reality is drawing steadily increas-
ing attention from mobile developers and researchers. Considering that cameras are
almost universally accessible for hand-held devices, multi-modal research topics that
take advantage of high-performance image-based algorithms together with robust light
detection and ranging information are highly encouraged.

On a regional level, understanding the focus and the foreground objects is of high
importance as well. Although limited computing performance and power consump-
tion of existing hardware are important terms in the whole equation, mixed reality
requires a high-level understanding of the focus and foreground objects to provide an
immersive experience such as foveated rendering. We believe that contextual aware-
ness is helpful for user-centered research including human-computer interactions and
remote collaboration.

On a local level, to achieve a convincing visualization for users to perceive the
augmented information as a natural part of the environment, it is essential to seam-
lessly provide correct occlusions and lighting to the virtual objects. The sensitive
human eye can instantly recognize unnatural behaviors and inconsistencies caused by
the algorithm, therefore, a faithful understanding of the dimensions and properties
of both physical and virtual objects, as well as interactions are essential to maintain
an immersive experience. A necessary and promising direction would be real-time
strategies of scene understanding (e. g. object recognition, semantic segmentation,
reconstruction) with high accuracy that is robust to occlusions and different lighting
conditions to facilitate future high-quality mixed reality applications.

Finally, it is necessary to actively evaluate the existing methodologies and receive
feedback from users during exploration. Being an emerging technology and a new for-
mat of tool that assists tasks in daily life, mixed reality applications are complicated
to design and evaluate. Therefore, we believe it is beneficial to study the practical-
ity and compatibility for users in parallel to designing and implementing new scene
understanding algorithms.
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