6 research outputs found

    Ordered Tomlinson-Harashima Precoding in G.fast Downstream

    Full text link
    G.fast is an upcoming next generation DSL standard envisioned to use bandwidth up to 212 MHz. Far-end crosstalk (FEXT) at these frequencies greatly overcomes direct links. Its cancellation based on non-linear Tomlinson-Harashima Precoding (THP) proved to show significant advantage over standard linear precoding. This paper proposes a novel THP structure in which ordering of successive interference pre-cancellation can be optimized for downstream with non-cooperating receivers. The optimized scheme is compared to existing THP structure denoted as equal-rate THP which is widely adopted in wireless downlink. Structure and performance of both methods differ significantly favoring the proposed scheme. The ordering that maximizes the minimum rate (max-min fairness) for each tone of the discrete multi-tone modulation is the familiar V-BLAST ordering. However, V-BLAST does not lead to the global maximum when applied independently on each tone. The proposed novel Dynamic Ordering (DO) strategy takes into account asymmetric channel statistics to yield the highest minimum aggregated rate.Comment: 7 pages, 11 figures, Accepted at the 2015 IEEE Globecom 2015, Selected Areas in Communications: Access Networks and Systems, 6-10 December, 201

    Physical Layer Techniques for High Frequency Wireline Broadband Systems

    Get PDF
    This thesis collects contributions to wireline and wireless communication systems with an emphasis on multiuser and multicarrier physical layer technology. To deliver increased capacity, modern wireline access systems such as G.fast extend the signal bandwidth up from tens to hundreds of MHz. This ambitious development revealed a number of unforeseen hurdles such as the impact of impedance changes in various forms. Impedance changes have a strong effect on the performance of multi-user crosstalk mitigation techniques such as vectoring. The first part of the thesis presents papers covering the identification of one of these problems, a model describing why it occurs and a method to mitigate its effects, improving line stability for G.fast systems.A second part of the thesis deals with the effects of temperature changes on wireline channels. When a vectored (MIMO) wireline system is initialized, channel estimates need to be obtained. This thesis presents contributions on the feasibility of re-using channel coefficients to speed up the vectoring startup procedures, even after the correct coefficients have changed, e.g., due to temperature changes. We also present extensive measurement results showing the effects of temperature changes on copper channels using a temperature chamber and British cables. The last part of the thesis presents three papers on the convergence of physical layer technologies, more specifically the deployment of OFDM-based radio systems using twisted pairs in different ways. In one proposed scenario, the idea of using the access copper lines to deploy small cells inside users' homes is explored. The feasibility of the concept, the design of radio-heads and a practical scheme for crosstalk mitigation are presented in three contributions

    Ordered Tomlinson-Harashima Precoding in G.fast Downstream

    Get PDF
    G.fast is an upcoming next generation DSL standard envisioned to use bandwidth up to 212 MHz. Far-end crosstalk (FEXT) at these frequencies greatly overcomes direct links. Its cancellation based on non-linear Tomlinson-Harashima Precoding (THP) proved to show significant advantage over standard linear precoding. This paper proposes a novel THP structure in which ordering of successive interference pre-cancellation can be optimized for downstream with non-cooperating receivers. The optimized scheme is compared to existing THP structure denoted as equal-rate THP which is widely adopted in wireless downlink. Structure and performance of both methods differ significantly favoring the proposed scheme. The ordering that maximizes the minimum rate (max-min fairness) for each tone of the discrete multi-tone modulation is the familiar V-BLAST ordering. However, V-BLAST does not lead to the global maximum when applied independently on each tone. The proposed novel Dynamic Ordering (DO) strategy takes into account asymmetric channel statistics to yield the highest minimum aggregated rate

    Optimizing Power Normalization for G.fast Linear Precoder by Linear Programming

    No full text
    The use of vectoring for crosstalk cancellation in the new ITU-T G.fast standard for next generation DSL systems becomes essential for efficient utilization of the extended bandwidth (up to 200 MHz). In VDSL2 (up to 30 MHz), a zero-forcing-based linear precoder is used in downstream which approaches single-line performance. However, at high frequencies, the linear precoder may amplify the signal power substantially since the crosstalk channel is much stronger than at lower frequencies. Performance could be significantly degraded by power normalization to keep the PSD below the mask. In this work, we extended a per-line power normalization scheme by linear programming (LP) optimization. By simulations using measured cable data it is shown how the LPbased scheme further improves the linear precoder and it is also capable of balancing the data rate between lines. Further, the simulations also show the non-linear Tomlinson-Harashima precoder performs better than the linear precoders

    Bandwidth Compressed Waveform and System Design for Wireless and Optical Communications: Theory and Practice

    Get PDF
    This thesis addresses theoretical and practical challenges of spectrally efficient frequency division multiplexing (SEFDM) systems in both wireless and optical domains. SEFDM improves spectral efficiency relative to the well-known orthogonal frequency division multiplexing (OFDM) by non-orthogonally multiplexing overlapped sub-carriers. However, the deliberate violation of orthogonality results in inter carrier interference (ICI) and associated detection complexity, thus posing many challenges to practical implementations. This thesis will present solutions for these issues. The thesis commences with the fundamentals by presenting the existing challenges of SEFDM, which are subsequently solved by proposed transceivers. An iterative detection (ID) detector iteratively removes self-created ICI. Following that, a hybrid ID together with fixed sphere decoding (FSD) shows an optimised performance/complexity trade-off. A complexity reduced Block-SEFDM can subdivide the signal detection into several blocks. Finally, a coded Turbo-SEFDM is proved to be an efficient technique that is compatible with the existing mobile standards. The thesis also reports the design and development of wireless and optical practical systems. In the optical domain, given the same spectral efficiency, a low-order modulation scheme is proved to have a better bit error rate (BER) performance when replacing a higher order one. In the wireless domain, an experimental testbed utilizing the LTE-Advanced carrier aggregation (CA) with SEFDM is operated in a realistic radio frequency (RF) environment. Experimental results show that 40% higher data rate can be achieved without extra spectrum occupation. Additionally, a new waveform, termed Nyquist-SEFDM, which compresses bandwidth and suppresses out-of-band power leakage is investigated. A 4th generation (4G) and 5th generation (5G) coexistence experiment is followed to verify its feasibility. Furthermore, a 60 GHz SEFDM testbed is designed and built in a point-to-point indoor fiber wireless experiment showing 67% data rate improvement compared to OFDM. Finally, to meet the requirements of future networks, two simplified SEFDM transceivers are designed together with application scenarios and experimental verifications
    corecore